Skip to main content
Log in

Evidence for interactions between the energy-dependent transport of sugars and the membrane potential in the yeastRhodotorula gracilis (Rhodosporidium toruloides)

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A membrane potential (inside negative) across the plasma membrane of the obligatory aerobic yeastRhodotorula gracilis is indicated by the intracellular accumulation of the lipid-soluble cations tetraphenylphosphonium and triphenylmethylphosphonium. The uptake of these ions is inhibited by anaerobic conditions, by uncouplers, by addition of diffusible ions, or by increase of the leakiness of the membrane caused by the polyene antibiotic nystatin. The membrane potential is strongly pH-dependent, its value increasing with decreasing extracellular proton concentration. Addition of transportable monosaccharides causes a depolarization of the electrical potential difference, indicating that the H+-sugar cotransport is electrogenic. The effect on the membrane potential is enhanced by increasing the sugar concentration. The half-saturation constants of depolarization ford-xylose andd-galactose were comparable to those of the corresponding transport system for the two sugars. All agents that depressed the membrane potential inhibited monosaccharide transport; hence the membrane potential provides energy for active sugar transport in this strain of yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azzone, G.F., Bragadin, M., Pozzan, T., Dell'Antone, P. 1976. Proton electrochemical potential in steady state rat liver mitochondria.Biochim. Biophys. Acta 439:90

    Google Scholar 

  • Brewer, J.M., Pesce, A.J., Ashworth, R.B. 1974. Experimental Techniques in Biochemistry. p. 299. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Deshusses, J., Reber, G. 1977. Transport of cyclitols by a proton symport inKlebsiella aerogenes.Eur. J. Biochem. 72:87

    Google Scholar 

  • Finkelstein, A., Holz, R. 1973. Aqueous pores created in thin lipid membrane by the polyene antibiotics nystatin and filipin.In: Membranes. Vol. 2. Lipid Bilayers and Antibiotics G. Eisenman, editor. p. 377. Dekker, New York

    Google Scholar 

  • Giacquinta, R. 1977. Phloem loading of sucrose.Plant Physiol. 59:750

    Google Scholar 

  • Hedenström, M. von 1976. Untersuchungen an Protoplasten der obligat aeroben HefeRhodotorula gracilis. Ph.D. Thesis. University of Bonn, Germany

    Google Scholar 

  • Heinz, E., Geck, P., Pietrzyk, C. 1975. Driving forces of amino acid transport in animal cells.Ann. N. Y. Acad. Sci. 264:428

    Google Scholar 

  • Heller, K., Höfer, M. 1975. Temperature dependence of the energy-linked monosaccharide transport across the cell membrane ofRhodotorula gracilis.J. Membrane Biol. 21:261

    Google Scholar 

  • Hoeberichts, J.A., Borst-Pauwels, G.W.F.H. 1975. Effect of tetraphenylboron upon the uptake of the lipophilic cation dibenzyldimethylammonium by yeast cells.Biochim. Biophys. Acta 413:248

    Google Scholar 

  • Höfer, M. 1971. Transport of monosaccharides inRhodotorula gracilis in the absence of metabolic energy.Arch. Mikrobiol. 80:50

    Google Scholar 

  • Höfer, M., Kotyk, A. 1968. Tight coupling of monosaccharide transport and metabolism inRhodotorula gracilis.Folia Microbiol. Prague 13:197

    Google Scholar 

  • Höfer, M., Misra, P.C. 1978. Evidence for a H+-sugar symport in the yeastRhodotorula gracilis (glutinis).Biochem. J. 172:15

    Google Scholar 

  • Horak, J., Kotyk, A. 1969. Anomalous uptake ofd-ribose byRhodotorula gracilis.Folia Microbiol. Prague 14:291

    Google Scholar 

  • Janda, S., Hedenström, M. von 1974. Uptake of disaccharides by the aerobic yeastRhodotorula glutinis.Arch. Microbiol. 101:273

    Google Scholar 

  • Komor, E., Rotter, M., Tanner, W. 1977. A proton-cotransport system in a higher plant: Sucrose transport inRicinus communis.Plant Sci. Lett. 9:153

    Google Scholar 

  • Komor, E., Tanner, W. 1976. The determination of the membrane potential ofChlorella vulgaris.Eur. J. Biochem. 70:197

    Google Scholar 

  • Kotyk, A., Höfer, M. 1965. Uphill transport of sugars in the yeastRhodotorula gracilis. Biochim. Biophys. Acta102:410

    Google Scholar 

  • Lagarde, A., Haddock, B.A. 1977. Proton uptake linked to the 3-deoxy-2-oxo-d-gluconate-transport system ofEscherichia coli.Biochem. J. 162:183

    Google Scholar 

  • Laris, P.C., Pershadsingh, H.A., Johnstone, R.M. 1976. Monitoring membrane potentials in Ehrlich ascites tumor cells by means of a fluorescent dye.Biochim. Biophys. Acta 436:475

    Google Scholar 

  • Liberman, E.A., Topali, V.P. 1969. Permeability of biomolecular phospholipid membranes for lipid-soluble ions.Biofizika 14:452

    Google Scholar 

  • Lineweaver, H., Burk, D. 1934. The determination of enzyme dissociation constants.J. Am. Chem. Soc. 56:658

    Google Scholar 

  • Lombardi, R.J., Reeves, J.P., Kaback, H.R. 1973. Mechanisms of active transport in isolated bacterial vesicles.J. Biol. Chem. 248:3551

    Google Scholar 

  • Miller, A.G., Budd, K. 1976 Evidence for a negative membrane potential for movement of Cl against its electrochemical gradient in the AscomyceteNeocosmospora vasinfecta.J. Bacteriol. 132:741

    Google Scholar 

  • Misra, P.C., Höfer, M. 1975. An energy-linked proton extrusion across the cell membrane ofRhodotorula gracilis.FEBS Lett. 52:95

    Google Scholar 

  • Racusen, R.H., Galston, A.W. 1977. Electrical evidence for rhythmic changes in the cotransport of sucrose and hydrogen ions inSamanea pulvini.Planta 135:57

    Google Scholar 

  • Seaston, A., Inkson, C., Eddy, A.A. 1973. The absorption of protons with specific amino acids and carbohydrates by yeast.Biochem. J. 134:1031

    Google Scholar 

  • Slayman, C.L., Slayman, C.W. 1974. Depolarization of the plasma membrane ofNeurospora during active transport of glucose: Evidence for a proton-dependent cotransport system.Proc. Nat. Acad. Sci. USA 71:1935

    Google Scholar 

  • West, I.C., Mitchell, P. 1972. Proton-coupled β-galactoside translocation in non-metabolizingEscherichia coli.J. Bioenerg. 3:445

    Google Scholar 

  • West, I.C., Mitchell, P. 1973. Stoichiometry of lactose-H+ symport across the plasma membrane ofEscherichia coli.Biochem. J. 132:587

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauer, R., Höfer, M. Evidence for interactions between the energy-dependent transport of sugars and the membrane potential in the yeastRhodotorula gracilis (Rhodosporidium toruloides) . J. Membrain Biol. 43, 335–349 (1978). https://doi.org/10.1007/BF01871695

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871695

Keywords

Navigation