Skip to main content
Log in

Potassium channels in plasmalemma ofNitella cells at rest

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Cation channels of passive transport in the plasmalemma ofNitella flexilis cells at rest were studied by the voltageclamp technique using microelectrodes. Two types of potassium channels have been identified. They are activated at different voltages: over −100 to −80 mV (D-channels) and below −100 mV (H-channels). The zero-current potential of instantaneous voltage-current curves (IVCC's) for both types of channels shifts by 50 to 55 mV in response to a 10-fold increase of K+ concentration in the solution. Ion movement in D-channels follows the free diffusion mechanism; in H-channels the independence principle is violated. The channel selectivity (in the order of decreasing permeability) is: K+>Rb+>NH +4 >Na+≥Li+>Cs+>TEA+≈ choline+. It has been found that D-channel Cs+ block is potential dependent while tetraethylammonium (TEA+) blocks H-channels in a potential-independent manner, but H+ ions do not affect the inward potassium current of the channels. Two types of potassium channels appear to be located in different parts of the membrane and their entrance parts are of different structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelman, W., French, R. 1978. Blocking of the squid axon potassium channels by external caesium ions.J. Physiol. (London) 276:13–25

    Google Scholar 

  • Armstrong, C.M. 1975. Evidence for ionic pores in excitable membrane.Biophys. J. 15:932–933

    Google Scholar 

  • Begenisich, T. 1975. Magnitude and location of surface charges onMixicola giant axons.J. Gen. Physiol. 66:47–65

    Google Scholar 

  • Berestovsky, G.N. 1981. The structure and operation principle of alga cell calcium channel.In: Theoretical and Experimental Problems of Transfer Processes in Complex Molecules and Biological Systems. p. 9. Nauka i Technika, Minsk (in Russian) (Abstr.)

    Google Scholar 

  • Bobrov, V.A. 1975. A study of photoinduced changes of electric potentials and ion fluxes throughNitella membranes. Candidate of Biology Thesis. Moscow State University, Moscow (in Russian)

    Google Scholar 

  • Bobrov, V.A., Vostrikov, I.Ya., Kurella, G.A., Yaglova, L.G. 1973. Photoinduced changes of electric potential difference on tonoplast and plasmalemma as indication of microelectrode tip localization in cell cytoplasm.Tsitologia 15:1165–1169 (in Russian)

    Google Scholar 

  • Bobrov, V.A., Yurin, V.M., Goncharik, M.N. 1980. H+ activity in cytoplasm and vacuole ofNitella flexilis cells: The effects of light, inhibitors of metabolism and the medium ion composition.Dokl. Akad. Nauk SSSR 253:761–765 (in Russian)

    Google Scholar 

  • Bradley, J., Williams, E.J. 1967. Voltage-controllable negative resistance inNitella translucens.Biochim. Biophys. Acta 135:1078–1080

    Google Scholar 

  • Carbone, E., Fioravanti, R., Prestipino, G., Wanke, E. 1978. Action of extracellular pH on Na+ and K+ membrane currents in giant axon ofLoligo vulgaris.J. Membrane Biol. 43:295–315

    Google Scholar 

  • Clarkson, D.T. 1974. Ion transport and cell structure in plants. McGraw-Hill Book Company (UK), London

    Google Scholar 

  • Drouin, H. 1976. Surface charges at nerve membranes.Bioelectrochem. Bioenerg. 3:222–229

    Google Scholar 

  • Ehrenstein, G., Gilbert, D. 1966. Slow changes of potassium permeability in the squid giant axon.Biophys. J. 6:553–566

    Google Scholar 

  • Findlay, G.P., Hope, A.B. 1964. Ionic relations of cells ofChara australis. VII. The separate electrical characteristics of the plasmalemma and tonoplast.Aust. J. Biol. Sci. 17:62–77

    Google Scholar 

  • Findlay, G.P., Hope, A.B., Pitman, M.G., Smith, F.A., Walker, N.A. 1969. Ionic fluxes in cells ofChara corallina.Biochim. Biophys. Acta 183:565–576

    Google Scholar 

  • Gaffey, C.T., Mullins, L.J. 1958. Ion fluxes during the action potential inChara.J. Physiol. (London) 144:505–524

    Google Scholar 

  • Goldman, D.E. 1943. Potential, impedance and rectification in membrane.J. Gen. Physiol. 27:37–60

    Google Scholar 

  • Haapanen, L., Skoglund, C. 1967. Recording of ionic efflux during single action potential inNitellopsis obtusa by means of high-frequency reflectometry.Acta Physiol. Scand. 69:51–68

    Google Scholar 

  • Hille, B. 1970. Ionic channels in nerve membranes.Prog. Biophys. Mol. Biol. 21:1–32

    Google Scholar 

  • Hille, B.. 1971. The permeability of sodium channel to organic cations in myelinated nerve.J. Gen. Physiol. 58:599–619

    Google Scholar 

  • Hille, B. 1972. The permeability of the sodium channel to metal cations in myelinated nerves.J. Gen. Physiol. 59:637–658

    Google Scholar 

  • Hille, B. 1973. Potassium channel in myelinated nerve. Selective permeability to small cations.J. Gen. Physiol. 61:669–689

    Google Scholar 

  • Hille, B., Schwartz, W. 1978. Potassium channels as multi-ion single-file pores.J. Gen. Physiol. 72:409–442

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952. Currents carried by sodium and potassium ions through the membrane of the giant axon ofLoligo.J. Gen. Physiol. 116:449–472

    Google Scholar 

  • Hogdkin, A.L., Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. (London) 108:57–77

    Google Scholar 

  • Hope, A.B., Walker, N.A. 1975. Physiology of Giant Algal Cells. Cambridge University Press. London-New York

    Google Scholar 

  • Hudson, D.J. 1964. Statistics. CERN, Geneva

    Google Scholar 

  • Ivanov, B.N. 1971. Selective properties of isolated shells ofNitella flexilis cells and artificial cellulose membranes. Candidate of Biology Thesis. Moscow State University, Moscow (Abstr.)

    Google Scholar 

  • Khodorov, B.I. 1975. General Physiology of Excitable Membranes. Nauka, Moscow (in Russian)

    Google Scholar 

  • Kishimoto, U. 1966. Hyperpolarizing response inNitella internodes.Plant Cell Physiol. 7:429–439

    Google Scholar 

  • Kitasato, H. 1973. K-permeability ofNitella clavata in the depolarized state.J. Gen. Physiol. 62:535–549

    Google Scholar 

  • Krawczyk, S. 1975. Current-voltage characteristics of algae membranes and calcium ions.Stud. Biophys. 49:157–159

    Google Scholar 

  • Kudriashov, A.P., Goncharik, M.N. 1980. Some peculiarities of the NH4Cl action on electric properties ofNitella membrane cells.Dokl. Acad. Nauk BSSR 24:1128–1131 (in Russian)

    Google Scholar 

  • Lakshminarayanaiah, H. 1977. Evolution of membrane surface charge density: A discussion of some models.Bull. Math. Biol. 39:643–662

    Google Scholar 

  • Lerch, D., Wolf, H. 1975a. Quantitative characterization of current-induced diffusion layers at cation-exchange membranes. I. Investigation of temporal and local behaviour of concentration profile at constant current density.Bioelectrochem. Bioenerg. 2:293–303

    Google Scholar 

  • Lerch, D., Wolf, H. 1975b. Quantitative characterization of current-induced diffusion layers thickness and concentration polarization in dependence on current density.Bioelectrochem. Bioenerg. 2:304–314

    Google Scholar 

  • Lev, A.A. 1975. Ionic Selectivity of Cellular Membranes. Nauka, Moscow (in Russian)

    Google Scholar 

  • Libbert, E. 1974. Lehrbuch der Pflanzenphysiologie. VEB Gustav Fischer, Jena

    Google Scholar 

  • Lucas, W.J. 1976. The influence of Ca2+ and K+ on H14CO 3 influx in internodal cells ofChara corallina.J. Exp. Bot. 27:32–42

    Google Scholar 

  • Lucas, W.J. 1979. Alkaline band formation inChara corallina due to OH efflux or H+ influx?.Plant Physiol. 63:248–254

    Google Scholar 

  • Lunevsky, V.Z., Zherelova, O.M., Alexandrov, A.A., Vinogradov, M.G., Berestovsky, G.N. 1980. A model of a selective calcium channel of alga cells.Biofizika 25:685–691 (in Russian)

    Google Scholar 

  • Luttge, U.U., Higinbotham, N. 1979. Transport of Plants. Springer, New York

    Google Scholar 

  • Lyalin, O.O. 1980. Electrical properties of cellular membranes and intermembrane contacts in higher plants. Doctor of Biology Thesis. All-Union Inst. of Plant Growing. Moscow(Abstr.) (in Russian)

    Google Scholar 

  • Markin, V.S., Chizmadzhev, Yu.A. 1974. Induced Ionic Transport. Nauka, Moscow (in Russian)

    Google Scholar 

  • Mozhaeva, G.N., Naumov, A.P. 1972. The surface charge effect on the steady potassium conductance of the Ranvier membrane.Biofizika 17:412–420 (in Russian)

    Google Scholar 

  • Oda, K. 1975. Recording of the potassium efflux during a single action potential inChara corallina.Plant Cell Physiol.16:525–528

    Google Scholar 

  • Seyama, C.J., Wu, C.H., Narahashi, T. 1980. Current-dependent block of nerve membrane sodium channels by paragracine.Biophys. J. 29:531–537

    Google Scholar 

  • Shone, M.G.T., Clarkson, D.T., Sanderson, J., Wood, A. 1973. A comparison of the uptake and translocation of some organic molecules and ions in higher plants.In: Ion Transport in Plants. W.P. Anderson, editor. p. 571. Academic, London-New York

    Google Scholar 

  • Sokolik, A.I. 1978. On surface charge ofNitella cell plasmalemma.In: Relationships of Organic World Development and Scientific Fundamentals of Its Use. pp. 53–54. Nauka i Technika, Minsk (in Russian)

    Google Scholar 

  • Sokolik, A.I. 1982. Potassium channels ofNitella cell plasmalemma at rest. Candidate of Biology Thesis, V.F. Kuprevich Inst. Exptl. Bot. Byelorussian Acad. Sci. Minsk (in Russian)

    Google Scholar 

  • Sokolik, A.I., Yurin, V.M. 1981. Transport properties of potassium channels of the plasmalemma inNitella cells at rest.Soviet Plant Physiol. 28:206–212

    Google Scholar 

  • Spanswick, R.M. 1972. Evidence for an electrogenic ion pump inNitella translucens. I. The effect of pH, K+, Na+, light and temperature on the membrane potential and resistance.Biochim. Biophys. Acta 288:73–89

    Google Scholar 

  • Spanswick, R.M. 1974. Evidence for an electrogenic ion pump inNitella translucens. II. Control of the light-stimulated component of membrane potential.Biochim. Biophys. Acta 332:387–398

    Google Scholar 

  • Spanswick, R.M., Williams, E.J. 1965. Ca fluxes and membrane potentials inNitella translucens.J. Exp. Bot. 16:465–473

    Google Scholar 

  • Volkov, G.A. 1977. Activation and voltage-current characteristics of excitable channels of early ionic flux ofNitella flexilis cell plasmalemma.Dokl. Akad. Nauk SSSR 237:1533–1535 (in Russian)

    Google Scholar 

  • Vostrikov, I.Ya. 1976. Ionic channels of excitable membranes—plasmalemma and tonoplast—ofChara alga cells. Calcium ion role in excitation. Candidate of Biology Thesis Moscow State University, Moscow (Abstr.) (in Russian)

    Google Scholar 

  • Walker, N.A., Beilby, M.J., Smith, F.A. 1979. Amine uniport at the plasmalemma of charophyte cells: I. Current-voltage curves, saturation kinetics and effect of unstirred layers.J. Membrane Biol. 49:21–55

    Google Scholar 

  • Walker, N.A., Hope, A.B. 1969. Membrane fluxes and electrical conductance in Characean cells.Aust. J. Biol. Sci. 22:1179–1195

    Google Scholar 

  • Wanke, E., Carbone, E., Testa, P. 1979. K+ conductance modified by a titrable group accessible to protons from the intracellular side of the squid axon membrane.Biophys. J. 26:319–324

    Google Scholar 

  • Woodhull, A.M. 1973. Ionic blockage of sodium channels in nerve.J. Gen. Physiol. 61:687–708

    Google Scholar 

  • Yurin, V.M., Goncharik, M.N., Galaktionov, S.G. 1977. Ion Transfer Across Plant Cell Membranes. Nauka i Tekhnika, Minsk (in Russian)

    Google Scholar 

  • Zubov, A.I. 1975. Ionic selectivity of plant cell membrane with regard to various bioelectric activity types. 12th Int. Botanic Congress. p. 460. Leningrad(Abstr.) (in Russian)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolik, A.I., Yurin, V.M. Potassium channels in plasmalemma ofNitella cells at rest. J. Membrain Biol. 89, 9–22 (1986). https://doi.org/10.1007/BF01870892

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870892

Key Words

Navigation