Skip to main content
Log in

Relation between intracellular sodium and active sodium transport in rabbit colon: Current-voltage relations of the apical sodium entry mechanism in the presence of varying luminal sodium concentrations

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The current-voltage relations of the amiloride-sensitive Na entry pathway across the apical membrane of rabbit descending colon, exposed to a high K serosal solution, were determined in the presence of varying mucosal Na activities, (Na) m , ranging from 6.2 to 99.4mm. These relations could be closely fit to the “constant field” flux equation yielding estimates of the permeability of the apical membrane to Na,P mNa , and the intracellular Na activity, (Na) c . The following empirical relations emerged: (i) (Na) c increased hyperbolically with increasing (Na) m ; (ii)P mNa decreased hyperbolically with increasing (Na) m and linearly with increasing (Na) c ; (iii) spontaneous variations in Na entry rate at constant (Na) m could be attributed entirely to parallel, spontaneous variations inP mNa ; (iv) the rate of Na entry increased hyperbolically with increasing (Na) m obeying simple Michaelis-Menten kinetics; (v) the relation between (Na) c and “pump rate,” however, was sharply sigmoidal and could be fit by the Hill equation assuming strong cooperative interactions between Na and multiple sites on the pump; the Hill coefficient was 2–3 and the value of (Na) c at which the pump-rate is half-maximal was 24mm. The results provide an internally consistent set of relations among Na entry across the apical membrane, the intracellular Na activity and basolateral pump rate that is also consistent with data previously reported for this and other Na-absorbing epithelia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arruda, J.A.L., Sabatini, S., Westenfelder, C. 1982. Serosal Na/Ca exchange and H+ and Na+ transport by the turtle and toad bladders.J. Membrane Biol. 70:135–146

    Google Scholar 

  • Blaustein, M.P. 1974. The interrelationship between sodium and calcium fluxes across cell membranes.Rev. Physiol. Biochem. Pharmacol. 70:33–82

    PubMed  Google Scholar 

  • Chase, H.S., Jr., Al-Awqati, Q. 1983. Calcium reduces the sodium permeability of luminal membrane vesicles from toad bladder: Studies using a fast reaction apparatus.J. Gen. Physiol. 81:643–665

    PubMed  Google Scholar 

  • Driessche, W. van, Lindemann, B. 1979. Concentration dependence of currents through single sodium-selective pores in frog skin.Nature (London) 282:519–520

    Google Scholar 

  • Eaton, D.C. 1981. Intracellular sodium ion activity and sodium transport in rabbit urinary bladder.J. Physiol. (London) 316:527–544

    Google Scholar 

  • Eaton, D.C., Frace, A.M., Silverthorn, S.U. 1982. Active and passive Na+ fluxes across the basolateral membrane of rabbit urinary bladder.J. Membrane Biol. 67:219–229

    Google Scholar 

  • Frizzell, R.A., Koch, M.J., Schultz, S.G. 1976. Ion transport by rabbit colon. I. Active and passive components.J. Membrane Biol. 27:297–316

    Google Scholar 

  • Frizzell, R.A., Schultz, S.G. 1978. Effect of aldosterone on ion transport by rabbit colon,in vitro.J. Membrane Biol. 39:1–26

    Google Scholar 

  • Frizzell, R.A., Turnheim, K. 1978. Ion transport by rabbit colon: II. Unidirectional sodium influx and the effects of amphotericin B and amiloride.J. Membrane Biol. 40:193–211

    Google Scholar 

  • Frömter, E., Higgins, J.T., Gebler, B. 1981. Electrical properties of amphibian urinary bladder epithelia. IV. The current-voltage relationship of the sodium channels in the apical cell membrane.In: Ion Transport by Epithelia. S.G. Schultz, editor. pp. 31–45. Raven Press, New York

    Google Scholar 

  • Fuchs, W., Larsen, E.H., Lindemann, B. 1977. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137–166

    Google Scholar 

  • Garcia-Diaz, J.F., Armstrong, W.McD. 1980. The steady-state relationship between sodium and chloride transmembrane electrochemical potential differences inNecturus gallbladder.J. Membrane Biol. 55:213–222

    Google Scholar 

  • Glynn, I.M., Karlish, S.J.D. 1975. The sodium pump.Annu. Rev. Physiol. 37:13–55

    PubMed  Google Scholar 

  • Grinstein, S., Erlij, D. 1978. Intracellular calcium and the regulation of sodium transport in the frog skin.Proc. R. Soc. London, B 202:353–360

    Google Scholar 

  • Higgins, F.T., Jr., Frömter, E. 1974. Cell membrane potentials in amphibian urinary bladder.Physiologist 17:A247

    Google Scholar 

  • Hildmann, B., Schmidt, A., Murer, H. 1982. Ca++ transport across basal-lateral plasma membranes from rat small intestinal epithelial cells.J. Membrane Biol. 65:55–62

    Google Scholar 

  • Hoffman, J.F., Kaplan, H., Callahan, T.J. 1979. The Na∶K pump in red cells is electrogenic.Fed. Proc. 38:2440–2441

    PubMed  Google Scholar 

  • Hoffman, J.F., Kennedy, B.G., Lunn, G. 1981. Modulators of red cells Na/K pump rates.In: Erythrocyte membranes 2: Recent Clinical and Experimental Advances. W.C. Kiuckeberg, J.W. Eaton & G.J. Brewer, editors. pp. 5–9. Alan Liss, New York

    Google Scholar 

  • Jorgensen, P.L. 1980. Sodium and potassium ion pump in kidney tubules.Physiol. Rev. 60:864–917

    PubMed  Google Scholar 

  • Kimura, G., Spring, K.R. 1979. Luminal Na entry intoNecturus proximal tubule cells.Am. J. Physiol. 236:F295-F301

    PubMed  Google Scholar 

  • Kirk, K.L., Halm, D.R., Dawson, D.C. 1980. Active sodium transport by turtle colon via an electrogenic Na−K exchange pump.Nature (London) 287:237–239

    Google Scholar 

  • Lee, C.O., Taylor, A., Windhager, E.E. 1980. Cytosolic calcium ion activity in epithelial cells ofNecturus kidney.Nature (London) 287:859–861

    Google Scholar 

  • Lewis, S.A., Wills, N.K. 1980. Resistive artifacts in liquid-ion exchanger microelectrode estimates of Na activity in epithelial cells.Biophys. J. 31:127–138

    PubMed  Google Scholar 

  • Lewis, S.A., Wills, N.K. 1981. Interaction between apical and baso-lateral membranes during sodium transport across tight epithelia.In: Ion Transport by Epithelia. S.G. Schultz, editor. pp. 93–107. Raven Press, New York

    Google Scholar 

  • Lewis, S.A., Wills, N.K., Eaton, D.C. 1978. Basolateral membrane potential of a tight epithelium: Ionic diffusion and electrogenic pumps.J. Membrane Biol. 41:117–148

    Google Scholar 

  • Li, J.H.-Y., Palmer, L.G., Edelman, I.S., Lindemann, B. 1982. The role of sodium-channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone.J. Membrane Biol. 64:77–89

    Google Scholar 

  • Lorenzen, M., Lee, C.O., Windhager, E.E. 1981. Effect of quinidine and ouabain on intracellular calcium and sodium activities in isolated perfused proximal tubules ofNecturus kidney.Kidney Int. 21:281a

    Google Scholar 

  • Macknight, A.D.C., DiBona, D.R., Leaf, A. 1980. Sodium transport across toad urinary bladder: A model tight epithelium.Physiol. Rev. 60:615–715

    Google Scholar 

  • Martin, D.W., Diamond, J.M. 1966. Energetics of coupled active transport of sodium and chloride.J. Gen. Physiol. 50:295–315

    Google Scholar 

  • Nagel, W. 1977. The dependence of the electrical potentials across the membranes of the frog skin upon the concentration of sodium in the mucosal solution.J. Physiol (London) 269:777–796

    Google Scholar 

  • Nagel, N., Garcia-Diaz, J.F., Essig, A. 1983. Cellular and paracellular conductance patterns in voltage-clamped frog skin.In: Membrane Biophysics: Physical Methods in the Study of Epithelia. M.A. Dinno, A.B. Callahan, and T.C. Rozell, editors. pp. 221–231. Alan Liss, New York

    Google Scholar 

  • Narvarte, J., Finn, A.L. 1980. Microelectrode studies in toad urinary bladder epithelium. Effects of Na concentration changes in the mucosal solution on equivalent electromotive forces.J. Gen. Physiol. 75:323–344

    PubMed  Google Scholar 

  • Nielsen, R. 1979. A 3 to 2 coupling of the Na−K pump responsible for the transepithelial Na transport in frog skin as disclosed by the effect of Ba.Acta Physiol. Scand. 107:189–191

    PubMed  Google Scholar 

  • Nielsen, R. 1982. Effect of amiloride, ouabain, and Ba++ on the nonsteady-state Na−K pump flux and the short-circuit current in isolated frog skin epithelia.J. Membrane Biol. 65:227–234

    Google Scholar 

  • Palmer, L.G., Edelman, I.S., Lindemann, B. 1980. Current-voltage analysis of apical sodium transport in toad urinary bladder: Effects of inhibitors of transport and metabolism.J. Membrane Biol. 57:59–71

    Google Scholar 

  • Palmer, L.G., Li, J.H.-Y., Lindemann, B., Edelman, I.S. 1982. Aldosterone control of the density of sodium channels in the toad urinary bladder.J. Membrane Biol. 64:91–102

    Google Scholar 

  • Rawlins, F., Mateu, L., Fragachan, F., Whittembury, G. 1970. Isolated toad skin epithelium: Transport characteristics.Pfluegers Arch. 316:64–80

    Google Scholar 

  • Robinson, R.A., Stokes, R.H. 1959. Electrolyte Solutions. Academic Press, New York

    Google Scholar 

  • Schultz, S.G. 1981a. Homocellular regulatory mechanisms in sodium-transporting epithelia: Avoidance of extinction by “flush-through.”Am. J. Physiol. 241:F579-F590

    PubMed  Google Scholar 

  • Schultz, S.G. 1981b. Potassium transport by rabbit colon,in vitro.Fed. Proc. 40:2408–2411

    PubMed  Google Scholar 

  • Schultz, S.G., Frizzell, R.A., Nellans, H.N. 1977. Active sodium transport and the electrophysiology of rabbit colon.J. Membrane Biol. 33:351–384

    Google Scholar 

  • Segel, I.H. 1975. Enzyme Kinetics, John Wiley and Sons, New York

    Google Scholar 

  • Spring, K.R., Giebisch, G. 1977. Kinetics of Na transport inNecturus proximal tubule.J. Gen. Physiol. 70:307–328

    PubMed  Google Scholar 

  • Taylor, A. 1981. Role of cytosolic calcium and Na−Ca exchange in regulation of transepithelial sodium and water absorptionIn: Ion Transport by Epithelia. S.G. Schultz, editor. pp. 233–259. Raven Press, New York

    Google Scholar 

  • Thomas, R.C. 1972. Electrogenic sodium pump in nerve and muscle cells.Physiol. Rev. 52:563–594

    Google Scholar 

  • Thomas, S.R., Suzuki, Y., Thompson, S.M., Schultz, S.G. 1983. Electrophysiology ofNecturus urinary bladder: I. “Instantaneous” current-voltage relations in the presence of varying mucosal sodium concentrations.J. Membrane Biol. 73:157–175

    Google Scholar 

  • Thompson, S.M., Suzuki, Y., Schultz, S.G. 1982a. The electrophysiology of rabbit descending colon: I. Instantaneous transepithelial current-voltage relations and the current-voltage relations of the Na-entry mechanism.J. Membrane Biol. 66:41–54

    Google Scholar 

  • Thompson, S.M., Suzuki, Y., Schultz, S.G. 1982b. The electrophysiology of rabbit descending colon. II. Current-voltage relations of the apical membrane, the basolateral membrane and the parallel pathways.J. Membrane Biol. 66:55–61

    Google Scholar 

  • Turnheim, K., Frizzell, R.A., Schultz, S.G. 1977. Effect of anions on amiloride-sensitive, active sodium transport across rabbit colon,in vitro J. Membrane Biol. 37:63–84

    Google Scholar 

  • Turnheim, K., Frizzell, R.A., Schultz, S.G. 1978. Interaction between cell sodium and the amiloride-sensitive sodium entry step in rabbit colon.J. Membrane Biol. 39:233–356

    Google Scholar 

  • Wills, N.K., Lewis, S.A., Eaton, D.C. 1979. Active and passive properties of rabbit descending colon: A microelectrode and nystatin study.J. Membrane Biol. 45:81–108

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turnheim, K., Thompson, S.M. & Schultz, S.G. Relation between intracellular sodium and active sodium transport in rabbit colon: Current-voltage relations of the apical sodium entry mechanism in the presence of varying luminal sodium concentrations. J. Membrain Biol. 76, 299–309 (1983). https://doi.org/10.1007/BF01870372

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870372

Key Words

Navigation