Skip to main content
Log in

Interaction between cell sodium and the amiloride-sensitive sodium entry step in rabbit colon

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Ouabain abolishes the short-circuit current (I sc ) and decreases the transepithelial conductance (G t ) of rabbit colon. In contrast, amphotericin B elicits a maximumI sc and markedly increasesG t . However, inboth instances the amiloride-sensitive Na entry step is completely blocked, presumably due to an increase in cell Na. Conversely, when Na-depleted tissues are suddenly exposed to 140mm Na, the amiloride-sensitiveI sc and the amiloride-sensitive component ofG t ( a G Na ) increase abruptly to their maximum values and the decline to steady-state plateaus with a half time of ∼ 6 min; throughout the decline (I sc/a G Na)=E Na is constant at a value of 95 mV. In the presence of amphotericin B, theI sc abruptly rises to the same maximum but does not decline. These findings indicate that in the presence of 140mm Na the conductance of the amiloride-sensitive Na entry step can vary from a maximum value of approximately 1.6 mmhos/cm2 when cell Na is depleted, to zero when cell Na is abnormally elevated (e.g., in the presence of ouabain or amphotericin B). Our findings are consistent with a system in which the pathway responsible for transcellular Na transport parallels another cellular compartment with which it communicates. The Na capacity of the active transport pathway appears to be very small so that this compartment fills rapidly after exposure of Na-depleted cells to 140mm Na, and active transepithelial Na transport is initiated and reaches steady-state levels quickly. The Na capacity of the second compartment is much larger; the Na content of this compartment appears to be responsible for the negative feedback effect on the permeability of the amiloride-sensitive entry step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bentley, P.J. 1968. Amiloride: A potent inhibitor of sodium transport across the toad bladder.J. Physiol. (London) 195:317

    Google Scholar 

  • Biber, T.U.L. 1971. Effect of changes in transepithelial transport on the uptake of sodium across the outer surface of the frog skin.J. Gen. Physiol. 58:131

    Google Scholar 

  • Cereijido, M., Rabito, C.A., Boulan Rodriquez, E., Rotunno, C.A. 1974. The sodiumtransporting compartment of the epithelium of frog skin.J. Physiol. (London) 237:555

    Google Scholar 

  • Chen, J.S., Walser, M. 1975. Sodium fluxes through the active transport pathway in toad bladder.J. Membrane Biol. 21:87

    Google Scholar 

  • Cuthbert, A.W., Shum, W.K. 1977. Does intracellular sodium modify membrane permeability to sodium ions?Nature (London) 266:468

    Google Scholar 

  • Dahl, J.L., Hokin, L.E. 1974. The sodium-potassium adenosinetriphosphatase.Annu. Rev. Biochem. 43:327

    Google Scholar 

  • Dörge, A., Nagel, W. 1970. Effect of amiloride on sodium transport in frog skin. II. Sodium transport pool and unidirectional fluxes.Pfluegers Arch. 321:91

    Google Scholar 

  • Dunham, P.B., Hoffman, J.F. 1971. Active cation transport and ouabain binding in high potassium and low potassium red blood cells of sheep.J. Gen. Physiol. 58:94

    Google Scholar 

  • Ehrlich, E.N., Crabbé, J. 1968. The mechanism of action of amipramizide.Pfluegers Arch. 321:91

    Google Scholar 

  • Erlij, D., Smith, M.W. 1973. Sodium uptake by frog skin and its modification by inhibitors of transepithelial sodium transport.J. Physiol. (London) 228:221

    Google Scholar 

  • Essig, A., Leaf, A. 1963. The role of potassium in active transport of sodium by the toad bladder.J. Gen. Physiol. 46:505

    Google Scholar 

  • Finkelstein, A., Holz, R. 1973. Aqueous pores created in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B.In: Membranes—A Series of Advances. Vol.2, p. 377. G. Eisenman, editor. Marcel Dekker, New York

    Google Scholar 

  • Finn, A.L. 1974. Transepithelial potential difference in toad urinary bladder is not due to ionic diffusion.Nature (London) 250:495

    Google Scholar 

  • Finn, A.L. 1975. The action of ouabain on sodium transport in toad urinary bladder. Evidence for two pathways for sodium entry.J. Gen. Physiol. 65:503

    Google Scholar 

  • Frizzell, R.A., Jennings, B. 1977. Potassium influx across basolateral membranes of rabbit colon: Relation to sodium absorption.Fed. Proc. 36:360

    Google Scholar 

  • Frizzell, R.A., Koch, M.J., Cooper, D.H., Schultz, S.G. 1975. Ion transport by rabbit colon: Effect of amiloride.Fed. Proc. 34:285

    Google Scholar 

  • Frizzell, R.A., Koch, M.J., Schultz, S.G. 1976. Ion transport by rabbit colon. I. Active and passive components.J. Membrane Biol. 27:297

    Google Scholar 

  • Frizzell, R.A., Schultz, S.G. 1972. Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences.J. Gen. Physiol. 59:318

    Google Scholar 

  • Frizzell, R.A., Schultz, S.G. 1976. Ion transport by rabbit colon: Effect of amphotericin B.Fed. Proc. 35:602

    Google Scholar 

  • Frizzell, R.A., Schultz, S.G. 1978. Effect of aldosterone on ion transport by rabbit colonin vitro.J. Membrane Biol. 39:1

    Google Scholar 

  • Glynn, I.M., Karlish, S.J.D. 1975. The sodium pump.Annu. Rev. Physiol. 37: 13

    Google Scholar 

  • Helman, S.I., Nagel, W. 1977. Microelectrode studies of frog skin: Effects of ouabain.Fed. Proc. 36: 632

    Google Scholar 

  • Hong, C.D., Essig, A. 1976. Effects of 2-deoxy-d-glucose, amiloride, vasopressin, and ouabain on active conductance andE Na in the toad bladder.J. Membrane Biol. 28:121

    Google Scholar 

  • Joiner, C.H., Lauf, P.K. 1977. Relationship between K pump flux (i M P K ) and3H-ouabain binding rate (OBR) in human and sheep red cells.Fed. Proc. 36:653

    Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H. H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298

    Google Scholar 

  • Larsen, E.H. 1973. Effect of amiloride, cyanide and ouabain on the active transport pathway in toad skin.In: Transport Mechanisms in Epithelia. H.H. Ussing and N.A. Thorn, editors, p. 131. Copenhagen, Munksgaard

    Google Scholar 

  • Leb, D.E., Edwards, C., Lindley, B., Hoshiko, T. 1965. Interaction between the effects of inside and outside Na and K on bullfrog skin potential.J. Gen. Physiol. 49:309

    Google Scholar 

  • Leblanc, G., Morel, F. 1975. Na and K movements across the membranes of frog skin associated with transient current changes.Pfluegers Arch. 358:159

    Google Scholar 

  • Lewis, S.A., Eaton, D.C., Clausen, C.J., Diamond, J.M. 1977. Nystatin as a probe for investigating the electrical properties of a tight epithelium.J. Gen. Physiol. (in press)

  • Lewis, S.A., Eaton, D.C., Diamond, J.M. 1976. The mechanism of Na+ transport by rabbit urinary bladder.J. Membrane Biol. 28:41

    Google Scholar 

  • Macknight, A.D.C., Civan, M.M., Leaf, A. 1975a. Some effects of ouabain on cellular ions and water in epithelial cells of toad urinary bladder.J. Membrane Biol. 20:387

    Google Scholar 

  • Macknight, A.D.C., Civan, M.M., Leaf, A. 1975b. The sodium transport pool in toad urinary bladder epithelial cells.J. Membrane Biol. 20:365

    Google Scholar 

  • MacRobbie, E.A.C., Ussing, H.H. 1961. Osmotic behavior of the epithelial cells of frog skin,Acta Physiol. Scand. 53:348

    Google Scholar 

  • Morel, F., Leblanc, G. 1975. Transient current changes and Na compartmentalization in frog skin epithelium.Pfluegers Arch. 358:135

    Google Scholar 

  • Moreno, J.H., Reisin, I.L., Rodriguez Boulan, E., Rotunna, C.A., Cereijido, M. 1973. Barriers to sodium movement across frog skin.J. Membrane Biol. 11:99

    Google Scholar 

  • Nagel, W., Dörge, A. 1970. Effect of amiloride on sodium transport of frog skin. I. Action on intracellular sodium content.Pfluegers Arch. 317:84

    Google Scholar 

  • Rick, R., Dörge, A., Nagel, W. 1975. Influx and efflux of sodium at the outer surface of frog skin.J. Membrane Biol. 22:183

    Google Scholar 

  • Robinson, B.A., Macknight, A.D.C. 1976. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder. II. Effects of different medium potassium concentrations on epithelial cell composition.J. Membrane Biol. 26:239

    Google Scholar 

  • Schultz, S.G., Curran, P.F., Chez, R.A., Fuisz, R.E. 1967. Alanine and sodium fluxes across the mucosal border of rabbit ileum.J. Gen. Physiol. 50:1241

    Google Scholar 

  • Schultz, S.G., Frizzell, R.A., Nellans, H.N. 1977. Active sodium transport and the electrophysiology of rabbit colon.J. Membrane Biol. 33:351

    Google Scholar 

  • Schultz, S.G., Zalusky, R. 1964. Ion transport in rabbit ileum. I. Short-circuit current and Na fluxes.J. Gen. Physiol. 47:567

    Google Scholar 

  • Snell, F.M., Chowdhury, T.K. 1965. Contralateral effects of sodium and potassium on the electrical potential in frog skin and toad bladder.Nature (London) 207:45

    Google Scholar 

  • Turnheim, K., Frizzell, R.A., Schultz, S.G. 1977. Effect of anions on amiloride-sensitive, active sodium transport across rabbit colon,in vitro: Evidence for “trans-inhibition of the Na entry mechanism”.J. Membrane Biol. 37:63

    Google Scholar 

  • Ussing, H.H., Zerahn, K. 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin.Acta Physiol. Scand. 23:110

    Google Scholar 

  • Whittam, R., Chipperfield, A.R. 1975. The reaction mechanism of the sodium pump.Biochim. Biophys. Acta. 415:149

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turnheim, K., Frizzell, R.A. & Schultz, S.G. Interaction between cell sodium and the amiloride-sensitive sodium entry step in rabbit colon. J. Membrain Biol. 39, 233–256 (1978). https://doi.org/10.1007/BF01870333

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870333

Keywords

Navigation