Skip to main content
Log in

Pathways for movement of ions and water across toad urinary bladder

I. Anatomic site of transepithelial shunt pathways

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Mucosal hypertonicity, produced by the addition of NaCl, KCl, mannitol, urea, sucrose or raffinose, reduced the electrical resistance of toad urinary bladder and induced bullous deformations (blisters) of the most apical junctions of the mucosal epithelium: the smaller solutes were most effective in eliciting both phenomena. Study of the effect of addition and subsequent removal of mannitol from the mucosal medium indicated that both the electrical and morphologic changes are reversible and follow the same time course. Mucosal hypertonicity induced comparable changes in the tissue in the presence or absence of inhibition of active sodium transport by replacement of sodium by choline, or by addition of ouabain or amiloride. Dilution of the tonicity of the serosal medium similarly reduced the tissue resistance and induced blisters within the epithelium, demonstrating that the osmotic gradient, rather than the mucosal hypertonicity itself is the cause of the osmotically-induced resistance change. The data indicate, therefore, that the osmotic gradient reduces the electrical resistance of the tissue primarily by deforming the apical junctions.

The simplest interpretation of the data is that the apical tight junctions are considerably more permeable to water and small solutes than had previously been thought. Addition of solute to the mucosal medium leads to the diffusion of solute into the junctions: the subsequent transfer of water from the lateral intercellular spaces and/or the adjacent cellular cytoplasm, deforms these structures and reduces the resistance to the passage of ions across the tissue. The results suggest that the apical junctions constitute the rate-limiting permeability barrier of the putative parallel shunt pathway across toad bladder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bentley, P. J. 1968. Amiloride: A potent inhibitor of sodium transport across toad bladder.J. Physiol. (London) 195:317.

    Google Scholar 

  2. Biber, T. U. L., Curran, P. F. 1968. Coupled solute fluxes in toad skin.J. Gen. Physiol. 51:606.

    Google Scholar 

  3. Boulpaep, E. L. 1967. Ion permeability of the peritubular and luminal membrane of the renal tubular cell.In: Symposium über Transport und Funktion Intracellularer Elektrolyte. F. Kruck, editor. pp. 98–107. Urban and Schwarzenberg, Munich.

    Google Scholar 

  4. Brightman, M. W., Reese, T. S. 1969. Junctions between intimately apposed cell membranes in the vertebrate brain.J. Cell Biol. 40:648.

    Google Scholar 

  5. Carasso, N., Favard, P., Valérien, J. 1962. Variations des ultrastructures dans les cellules epithéliales de la vessie du crapaud après stimulation par l'hormone neurohypophysaire.J. Microscopie 1:143.

    Google Scholar 

  6. Choi, J. K. 1963. The fine structure of the urinary bladder of the toad,Bufo marinus.J. Cell Biol. 16:53.

    Google Scholar 

  7. Civan, M. M. 1970. Effects of active sodium transport on current-voltage relationship of toad bladder.Amer. J. Physiol. 219:234.

    Google Scholar 

  8. Civan, M. M., Kedem, O., Leaf, A. 1966. Effect of vasopressin on toad bladder under conditions of zero net sodium transport.Amer. J. Physiol. 211:569.

    Google Scholar 

  9. DiBona, D. R. 1972. Passive pathways in amphibian epithelia: Morphologic evidence for an intercellular route.Nature, New Biol. 238:179.

    Google Scholar 

  10. DiBona, D. R., Civan, M. M. 1972. Anatomic site of osmotically-induced conductance changes in toad urinary bladder.Fed. Proc. 31:279 Abs.

    Google Scholar 

  11. DiBona, D. R., Civan, M. M. 1972. Osmotically-induced conductance changes in toad bladder under physiologic conditions.Int. Union of Pure and Applied Biophysics IVth Congress. (In press).

  12. DiBona, D. R., Civan, M. M., Leaf, A. 1969. The anatomic site of the transepithelial permeability barriers of toad bladder.J. Cell Biol. 40:1.

    Google Scholar 

  13. DiBona, D. R., Civan, M. M., Leaf, A. 1969. The cellular specificity of the effect of vasopressin on toad urinary bladder.J. Membrane Biol. 1:79.

    Google Scholar 

  14. Farquhar, M., Palade, G. E. 1963. Junctional complexes in various epithelia.J. Cell Biol. 17:375.

    Google Scholar 

  15. Farquhar, M., Palade, G. E. 1965. Cell junctions in amphibian skin.J. Cell Biol. 26:263.

    Google Scholar 

  16. Finkelstein, A. 1964. Electrical excitability of isolated frog skin and toad bladder.J. Gen. Physiol. 41:545.

    Google Scholar 

  17. Franz, T. J., Van Bruggen, J. T. 1967. Hyperosmolality and the net transport of nonelectrolytes in frog skin.J. Gen. Physiol. 50:933.

    Google Scholar 

  18. Franz, T. J., Galey, W. R., Van Bruggen, J. T. 1968. Further observations on asymmetrical solute movement across membranes.J. Gen. Physiol. 51:1.

    Google Scholar 

  19. Frizzell, R. A., Schultz, S. G. 1972. Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences.J. Gen. Physiol. 59:218.

    Google Scholar 

  20. Frömter, E., Diamond, J. 1972. Route of passive ion permeation in epithelia.Nature 235:9.

    Google Scholar 

  21. Herrera, F. C. 1966. Action of ouabain on sodium transport in toad urinary bladder.Amer. J. Physiol. 210:980.

    Google Scholar 

  22. Keller, A. R. 1963. A histochemical study of the toad urinary bladder.Anat. Rec. 147:367.

    Google Scholar 

  23. Lindley, B., Hoshiko, T., Leb, D. E. 1964. Effects of D2O and osmotic gradients on potential and resistance of the isolated frog skin.J. Gen. Physiol. 47:773.

    Google Scholar 

  24. Macknight, A. D. C., DiBona, D. R., Leaf, A., Civan, M. M. 1971. Measurement of the composition of epithelial cells from the toad urinary bladder.J. Membrane Biol. 6:108.

    Google Scholar 

  25. Macknight, A. D. C., Leaf, A., Civan, M. M. 1971. Effects of vasopressin on the water and ionic composition of toad bladder epithelial cells.J. Membrane Biol. 6:127.

    Google Scholar 

  26. Mandel, L., Curran, P. F. 1972. Response of the frog skin to steady-state voltage clamping: I. The shunt pathway.J. Gen. Physiol. 59:503.

    Google Scholar 

  27. Masur, S. K., Holtzman, E., Schwartz, I. L., Walter, R. 1971. Correlation between pinocytosis and hydroosmosis induced by neurohypophyseal hormones and mediated by adenosine 3′,5′-cyclic monophosphate.J. Cell Biol. 49:582.

    Google Scholar 

  28. Peachey, L. D., Rasmussen, H. 1961. Structure of the toad's urinary bladder as related to its physiology.J. Biophys. Biochem. Cytol. 10:529.

    Google Scholar 

  29. Schultz, S. G., Solomon, A. K. 1961. Determination of the effective hydrodynamic radii of small molecules by viscometry.J. Gen. Physiol. 44:1189.

    Google Scholar 

  30. Urakabe, S., Handler, J. S., Orloff, J. 1970. Effect of hypertonicity on permeability properties on the toad bladder.Amer. J. Physiol. 218:1179.

    Google Scholar 

  31. Ussing, H. H. 1963. Effects of hypertonicity produced by urea on active transport and passive diffusion through the isolated frog skin.Acta Physiol. Scand. 59 (Suppl. 213):155.

    Google Scholar 

  32. Ussing, H. H. 1965. Relationship between osmotic reactions and active sodium transport in the frog skin epithelium.Acta Physiol. Scand. 63:141.

    Google Scholar 

  33. Ussing, H. H. 1966. Anomalous transport of electrolytes and sucrose through the isolated frog skin induced by hypertonicity of the outside bathing solution.Ann. N.Y. Acad. Sci. 137:543.

    Google Scholar 

  34. Ussing, H. H. 1969. The interpretation of tracer fluxes in terms of membrane structure.Quart. Rev. Biophys. 1:365.

    Google Scholar 

  35. Ussing, H. H., Windhager, E. E. 1964. Nature of shunt path and active sodium transport path through frog skin epithelium.Acta Physiol. Scand. 61:484.

    Google Scholar 

  36. Wade, J. B., DiScala, V. A. 1971. The effect of osmotic gradients on the ultrastructure of the zonulae occludentes in toad bladder epithelia.11th Annual Meeting, Amer. Soc. Cell Biol., Abstr. 622.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiBona, D.R., Civan, M.M. Pathways for movement of ions and water across toad urinary bladder. J. Membrain Biol. 12, 101–128 (1973). https://doi.org/10.1007/BF01869994

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869994

Keywords

Navigation