Skip to main content
Log in

Ionic channels formed byStaphylococcus aureus alpha-toxin: Voltage-dependent inhibition by divalent and trivalent cations

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The interaction ofStaphylococcus aureus α-toxin with planar lipid membranes results in the formation of ionic channels whose conductance can be directly measured in voltage-clamp experiments. Single-channel conductance depends linearly on the solution conductivity suggesting that the pores are filled with aqueous solution; a rough diameter of 11.4±0.4 Å can be estimated for the pore. The conductance depends asymmetrically on voltage and it is slightly anion selective at pH 7.0, which implies that the channels are asymmetrically oriented into the bilayer and that ion motion is restricted at least in a region of the pore. The pores are usually open in a KCl solution but undergo a dose- and voltage-dependent inactivation in the presence of diand trivalent cations, which is mediated by open-closed fluctuations at the single-channel level. Hill plots indicate that each channel can bind two to three inactivating cations. The inhibiting efficiency follows the sequence Zn2+>Tb3+>Ca2+>Mg2+>Ba2+. suggesting that carboxyl groups of the protein may be involved in the binding step. A voltage-gated inactivation mechanism is proposed which involves the binding of two polyvalent cations to the channel, one in the open and one in the closed configuration, and which can explain voltage, dose and time dependence of the inactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbuthnott, J.P., Freer, J.H., Billcliffe, B. 1973. Lipid-induced polymerization of staphylococcal α-toxin.J. Gen. Microbiol. 75:309–319

    PubMed  Google Scholar 

  2. Bashford, C.L., Alder, G.M., Patel, K., Pasternak, C.A. 1984. Common action of certain viruses, toxins and activated complement: Pore formation and its prevention by extracellular Ca2+.Biosci. Rep. 4:797–805

    PubMed  Google Scholar 

  3. Benz, R., Darveau, R.P., Hancock, R.E.W., 1984. Outer membrane protein PhoE fromEscherichia coli forms anion selective pores in lipid-bilayer membranes.Eur. J. Biochem. 140:319–324

    PubMed  Google Scholar 

  4. Benz, R., Ishii, J., Nakae, T. 1980. Determination of ion permeability through the channels made of porins from the outer membrane ofSalmonella typhimurium in lipid bilayer membranes.J. Membrane Biol. 56:19–29

    Google Scholar 

  5. Bhakdi, S., Füssle, R., Tranum-Jensen, J. 1981. Staphylococcal α-toxin: Oligomerization of hydrophilic monomers to form amphiphilic hexamers induced through contact with deoxycholate detergent micelles.Proc. Natl. Acad. Sci. USA 78:5475–5479

    PubMed  Google Scholar 

  6. Bhakdi, S., Muhly, M., Füssle, R. 1984. Correlation between toxin binding and hemolytic activity in membrane damage by staphylococcal alpha-toxin.Infect. Immunol. 46:318–323

    Google Scholar 

  7. Bhakdi, S., Tranum-Jensen, J. 1983. Membrane damage by channel-forming proteins.Trends Biochem. Sci. 8:134–136

    Google Scholar 

  8. Bhakdi, S., Tranum-Jensen, J. 1984. Mechanism of complement cytolysis and the concept of channel-forming proteins.Philos. Trans. R. Soc. London B. 306:311–324

    Google Scholar 

  9. Bockris, J.O.M., Reddy, A.K.N. 1970. Modern Electrochemistry. Vol. 1, Plenum, New York

    Google Scholar 

  10. Boheim, G., Kolb, H.-A. 1978. Analysis of the multi-pore system of alamethicin in a lipid membrane. I. Voltage-jump current-relaxation measurements.J. Membrane Biol. 38:99–150

    Google Scholar 

  11. Bukelew, A.R., Colacicco, G. 1971. Lipid monolayers. Interaction with staphylococcal α-toxin.Biochim. Biophys. Acta 233:7–16

    PubMed  Google Scholar 

  12. Cassidy, P., Six, A.R., Harshmann, S. 1974. Biological properties of Staphylococcal α-toxin.Biochim. Biophys. Acta 332:413–425

    Google Scholar 

  13. Colquohun, D., Hawkes, A.G. 1977. Relaxation and fluctuations of membrane currents that flow through drug-operated ion channels.Proc. R. Soc. London 199:231–262

    Google Scholar 

  14. Coronado, R., Miller, C. 1979. Voltage-dependent caesium blockade of a cation channel from fragmented sarcoplasmic reticulum.Nature (London) 280:807–810

    Google Scholar 

  15. Davidson, V.L., Brunden, K.R., Cramer, W.A., Cohen, F.S. 1984. Studies on the mechanism of action of channel-forming colicins using artificial membranes.J. Membrane Biol. 79:105–118

    Google Scholar 

  16. Ehrenstein, G., Lecar, H. 1977. Electrically gated ionic channels in lipid bilayers.Q. Rev. Biophys. 10:1–34

    PubMed  Google Scholar 

  17. Eisenberg, M., Gresalfi, T., Riccio, T., McLaughlin, S. 1979. Adsorption of monovalent cations to bilayer membranes containing negative phospholipids.Biochemistry 18:5213–5223

    PubMed  Google Scholar 

  18. Freer, J.H. 1982. Cytolytic toxins and surface activity.Toxicon 20:217–221

    PubMed  Google Scholar 

  19. Freer, J.H., Arbuthnott, J.P., Bernheimer, A.W. 1968. Interaction of staphylococcal α-toxin with artificial and natural membranes.J. Bacteriol. 95:1153–1168

    PubMed  Google Scholar 

  20. Freer, J.H., Arbuthnott, J.P., Bilcliffe, B. 1973. Effects of staphylococcal α-toxin on the structure of erythrocytes membranes.J. Gen. Microbiol. 75: 321–332

    PubMed  Google Scholar 

  21. Füssle, R., Bhakdi, S., Sziegoleit, A., Tranum-Jensen, J., Kranz, T., Wellensiek, H.J. 1981. On the mechanism of membrane damage byStaphylococcus aureus α-toxin.J. Cell Biol. 91:83–94

    PubMed  Google Scholar 

  22. Gordon, L.G.M., Haydon, D.A. 1975. Potential dependent conductances in lipid membranes containing alamethicin.Philos. Trans. R. Soc. London B. 270:433–447

    Google Scholar 

  23. Harshman, S. 1979. Action of staphylococcal α-toxin on membranes: Some recent advances.Mol. Cell. Biochem. 23:142–152

    Google Scholar 

  24. Harshman, S., Sugg, N. 1985. Effect of calcium ions on staphylococcal alpha-toxin induced hemolysis of rabbit ervthrocytes.Infect. Immunol. 47:37–40

    Google Scholar 

  25. Lee, K.S., Akaike, N., Brown, A.M. 1978. Properties of internally perfused, voltage-clamped, isolated nerve cell bodies.J. Gen. Physiol. 71:489–507

    PubMed  Google Scholar 

  26. Martin, R.B., Richardson, F.S. 1979. Lanthanides as probes for calcium in biological systems.Q. Rev. Biophys. 12:181–209

    PubMed  Google Scholar 

  27. McLaughlin, A., Grathwohl, C., McLaughlin, S. 1978. The adsorption of divalent cations to phosphatidylcholine bilayer membranes.Biochim. Biophys. Acta 513:338–357

    Google Scholar 

  28. McLaughlin, S., Mulrine, N., Gresalfi, T., Vaio, G., McLaughlin, A. 1981. Adsorption of divalent cations to bilayer membranes containing phosphatidylserine.J. Gen. Physiol. 77:445–473

    Google Scholar 

  29. Menestrina, G., Antolini, R. 1981. Ion transport through hemocyanin channels in oxidized cholesterol artificial bilayer membranes.Biochim. Biophys. Acta 643:616–625

    PubMed  Google Scholar 

  30. Menestrina, G., Maniacco, D., Antolini, R. 1983. A kinetic study of the opening and closing properties of the hemocyanin channel in artificial lipid bilayer membranes.J. Membrane Biol. 71:173–182

    Google Scholar 

  31. Menestrina, G., Porcelluzzi, C. 1985. Dependence of ion flow through the hemocyanin channel on a fixed charge at the pore mouth: Effects of H and Ca2+ ions.Biochim. Biophys. Acta (in press)

  32. Methfessl, C., Boheim, G. 1982. The gating of single Ca2+-dependent K+ channels is described by an activation/blockade mechanism.Biophys. Struct. Mech. 9:35–60

    Google Scholar 

  33. Moczydlowski, E., Latorre, R. 1985. Gating kinetics of Ca2+ activated K+ channels from rat muscle incorporated into planar lipid bilayers.J. Gen. Physiol. 82:511–542

    Google Scholar 

  34. Montal, M., Mueller, P. 1972. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties.Proc. Natl. Acad. Sci. USA 69:3561–3566

    PubMed  Google Scholar 

  35. Pasternak, C.A., Bashford, C.L., Micklem, K.J. 1985. Ca2+ and the interaction of pore formers with membranes.J. Biosci. 8:273–291

    Google Scholar 

  36. Pitzer, K.S. 1979. Theory: Ion interaction approach.In: Activity Coefficients in Electrolyte Solutions. R.M. Pytkovicz, editor. Vol. 1, pp. 158–208. CRC Press, Boca Raton, Florida

    Google Scholar 

  37. Raymond, L., Slatin, S.L., Finkelstein, A. 1985. Channels formed byColicin E1 in planar lipid bilayers are larg and exhibit pH-dependent ion selectivity.J. Membrane Biol. 84:173–181

    Google Scholar 

  38. Schultz, S.G. 1980. Basic Principles of Membrane Transport. Cambridge University Press, New York

    Google Scholar 

  39. Tobkes, N., Wallace, B.A., Bayley, H. 1985. Secondary structure and assembly mechanism of an oligomeric channel protein.Biochemistry 24:1915–1920

    PubMed  Google Scholar 

  40. Williams, R.J.P. 1952. The stability of complexes of the group IIA metal ions.J. Chem. Soc. 3770–3778

  41. Woodhull, A.M. 1973. Ionic blockage of sodium channels in nerve.J. Gen. Physiol. 61:687–708

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menestrina, G. Ionic channels formed byStaphylococcus aureus alpha-toxin: Voltage-dependent inhibition by divalent and trivalent cations. J. Membrain Biol. 90, 177–190 (1986). https://doi.org/10.1007/BF01869935

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869935

Key Words

Navigation