Skip to main content

Voltage-Gated Ion Channels

  • Reference work entry
  • First Online:
Neuroscience in the 21st Century
  • 591 Accesses

Abstract

Electrical signaling by ion channels is a fundamental cellular regulatory pathway in all organisms from prokaryotes to humans. Voltage-gated Na+ (VGSC), Ca2+ (VGCC), and K+ (VGPC) channels are responsible for action potential generation in electrically excitable cells, for example, neurons and muscle cells, and for regulation of membrane potential and intracellular Ca2+ levels in other cell types. The basic functional properties of this protein family were initially defined in classic voltage-clamp studies by Hodgkin and Huxley in 1952. During the 1970s, many scientists built upon the fundamental insights of these pioneers to investigate electrical signal transduction using patch-clamp techniques, to measure ion channel function by neurotoxin-activated ion flux, and to detect VGSC proteins (the first member of this family to be studied biochemically) by high affinity binding of the neurotoxins tetrodotoxin, saxitoxin, and scorpion toxin (discussed later in this chapter). However, the molecular basis of excitability remained unclear until the 1980s, when Dr. William A. Catterall and his colleagues at the University of Washington discovered the VGSC protein (in 1980) and the VGCC protein (in 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BACE1:

β-site amyloid precursor protein-cleaving enzyme 1

Ca2+ :

Calcium

CAM:

Cell adhesion molecule

CaMKII:

Calcium/calmodulin-dependent protein kinase II

cDNA:

Complementary deoxyribonucleic acid

Cl :

Chloride

CNS:

Central nervous system

ENa:

Sodium equilibrium potential

ERK:

Extracellular-signal regulated kinases

Ff:

Fraction of channels that inactivate through fast inactivation

FHF:

Fibroblast growth factor homologous factors

Fr:

Fraction of channels that have recovered from inactivation

Fs:

Fraction of channels that inactivate through slow inactivation

g:

Conductance

GEFS+ :

Genetic (generalized) epilepsy with febrile seizures plus

GPD1L:

Glycerol-3-phosphate dehydrogenase 1-like protein

I:

Current

ICD:

Intracellular domain

Ig:

Immunoglobulin

IP5P:

Inositol polyphosphate 5-phosphatase

Ipeak:

Peak current

iPSCs:

Induced pluripotent stem cells

K+ :

Potassium

MAPK:

Mitogen-activated protein kinases

MOG1:

Multicopy suppressor of gsp1

mRNA:

Messenger ribonucleic acid

Na+ :

Sodium

NF:

Neurofascin

Nr-CAM:

Neuronal cell adhesion molecule

PCR:

Polymerase chain reaction

PDZ:

Post synaptic density protein Drosophila disk large tumor suppressor, Zonula occludens-1 protein

PNS:

Peripheral nervous system

PP2A:

Protein phosphatase 2A

PTPH1:

Protein tyrosine phosphatase H1

REST:

RE1-silencing factor

RPTPβ:

Receptor phosphoprotein tyrosine phosphatase-β

Src:

Sarcoma

t:

Time

TM:

Transmembrane

tf:

Rate constant for fast inactivation

τr:

Rate constant for recovery

τs:

Rate constant for slow inactivation

TTX:

Tetrodotoxin

V:

Voltage

VGCC:

Voltage-gated calcium channels

VGPC:

Voltage-gated potassium channels

VGSC:

Voltage-gated sodium channels

Vm:

Membrane voltage membrane potential

References

  • Beneski D, Catterall WA (1980) Covalent labeling of protein components of the sodium channel with a photoactivable derivative of scorpion toxin. Proc Natl Acad Sci U S A 77:639–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brackenbury WJ, Djamgoz MBA, Isom LL (2008) An emerging role for voltage-gated Na+ channels in cellular migration: regulation of central nervous system development and potentiation of invasive cancers. Neuroscientist 14:571–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catterall WA (1980) Neurotoxins that act on voltage-sensitive sodium channels. Annu Rev Pharmacol Toxicol 20:15–43

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA (1984) The molecular basis of neuronal excitability. Science 223:653–661

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA (1986) Voltage-dependent gating of sodium channels: correlating structure and function. Trends Neurosci 9:7–10

    Article  CAS  Google Scholar 

  • Catterall WA, Goldin AL, Waxman SG (2005) International union of pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 57:397–409

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA, Cestèle S, Yarov-Yarovoy V, Yu FH, Konoki K, Scheuer T (2007) Voltage-gated ion channels and gating modifier toxins. Toxicon 49:124–141

    Article  CAS  PubMed  Google Scholar 

  • Curtis BM, Catterall WA (1984) Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry 23:2113–2118

    Article  CAS  PubMed  Google Scholar 

  • Goldin AL, Snutch T, Lubbert H, Dowsett A, Marshall J, Auld V, Downey W, Fritz LC, Lester HA, Dunn R, Catterall WA, Davidson N (1986) Messenger RNA coding for only the? subunit of the rat brain Na channel is sufficient for expression of functional channels in Xenopus oocytes. Proc Natl Acad Sci U S A 83:7503–7507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartshorne RP, Catterall WA (1981) Purification of the saxitoxin receptor of the sodium channel from mammalian brain. Proc Natl Acad Sci U S A 78:4620–4624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartshorne RP, Messner DJ, Coppersmith JC, Catterall WA (1982) The saxitoxin receptor of the sodium channel from rat brain. Evidence for two nonidentical β subunits. J Biol Chem 257:13888–13891

    CAS  PubMed  Google Scholar 

  • Hartshorne RP, Keller BU, Talvenheimo JA, Catterall WA, Montal M (1985) Functional reconstitution of the purified brain sodium channel in planar lipid bilayers. Proc Natl Acad Sci U S A 82:240–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland

    Google Scholar 

  • Hughes A (2010) Cardiac sodium channel Nav1.5 and interacting proteins: physiology and pathology. J Mol Cell Cardiol 48:2–11

    Article  Google Scholar 

  • Isom LL, De Jongh KS, Patton DE, Reber BFX, Offord J, Charbonneau H, Walsh K, Goldin AL, Catterall WA (1992) Primary structure and functional expression of the? 1 subunit of the rat brain sodium channel. Science 256:839–842

    Article  CAS  PubMed  Google Scholar 

  • Isom LL, Ragsdale DS, De Jongh KS, Westenbroek RE, Reber BFX, Scheuer T, Catterall WA (1995) Structure and function of the? 2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM-motif. Cell 83:433–442

    Article  CAS  PubMed  Google Scholar 

  • Li M, West JW, Numann R, Murphy BJ, Scheuer T, Catterall WA (1993) Convergent regulation of Na+ channels by protein kinase C and cAMP-dependent protein kinase. Science 261:1439–1442

    Article  CAS  PubMed  Google Scholar 

  • Mantegazza M, Curia G, Biagini G, Ragsdale DS, Avoli M (2010) Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol 9:413–424

    Article  CAS  PubMed  Google Scholar 

  • Noda M, Ikeda T, Suzuki H, Takeshima H, Takahashi T, Kuno M, Numa S (1986a) Expression of functional sodium channels from cloned cDNA. Nature 322(6082):826–828

    Article  CAS  PubMed  Google Scholar 

  • Noda M, Ikeda T, Suzuki H, Takeshima H, Takahashi T, Kuno M, Numa S (1986b) Existence of distinct sodium channel messenger RNAs in rat brain. Nature 320(6058):188–192, PubMed PMID: 3754035

    Article  CAS  PubMed  Google Scholar 

  • Ogata N, Ohishi Y (2002) Molecular diversity of structure and function of the voltage-gated Na+ channels. Jpn J Pharmacol 88:365–377

    Article  CAS  PubMed  Google Scholar 

  • Patino GA, Isom LL (2010) Electrophysiology and beyond: multiple roles of Na+ channel β subunits in development and disease. Neurosci Lett 486:53–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475(7356):353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragsdale DS, McPhee JC, Scheuer T, Catterall WA (1994) Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science 265:1724–1728

    Article  CAS  PubMed  Google Scholar 

  • Scheuer T (2010) Regulation of sodium channel activity by phosphorylation. Semin Cell Dev Biol. doi:10.1016/j.semcdb.2010.10.002

    PubMed  PubMed Central  Google Scholar 

  • Talvenheimo JA, Tamkun MM, Catterall WA (1982) Reconstitution of neurotoxin-stimulated sodium transport by the voltage-sensitive sodium channel purified from rat brain. J Biol Chem 257:11868–11871

    CAS  PubMed  Google Scholar 

  • Vassilev PM, Scheuer T, Catterall WA (1988) Identification of an intracellular peptide segment involved in sodium channel inactivation. Science 241:1658–1661

    Article  CAS  PubMed  Google Scholar 

  • Weiss J, Pyrski M, Jacobi E, Bufe B, Willnecker V, Schick B, Zizzari P, Gossage SJ, Greer CA, Leinders-Zufall T, Woods CG, Wood JN, Zufall F (2011) Loss-of-function mutations in sodium cannel Na(v)1.7 cause anosmia. Nature. doi:10.1038/nature09975

    Google Scholar 

  • West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA (1992) A cluster of hydrophobic amino acid residues required for fast Na+ channel inactivation. Proc Natl Acad Sci U S A 89:10910–10914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu FH, Mantegazza M, Westenbroek RE, Robbins CA, Kalume F, Burton KA, Spain WJ, McKnight GS, Scheuer T, Catterall WA (2006) Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy of infancy. Nat Neurosci 9(1142):1149

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori Isom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Isom, L., Patino, G., Lopez-Santiago, L., Yuan, Y. (2016). Voltage-Gated Ion Channels. In: Pfaff, D., Volkow, N. (eds) Neuroscience in the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3474-4_3

Download citation

Publish with us

Policies and ethics