Skip to main content
Log in

Channel formation kinetics of gramicidin A in lipid bilayer membranes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Previous studies have given evidence that the active form of gramicidin A in lipid bilayer membranes is a dimer which acts as an ion channel; it has been further shown that the mean lifetime of the channel strongly depends on the membrane thickness. As the thickness slightly decreases when a voltage is applied to the membrane, the equilibrium between conducting dimers and nonconducting monomers may be displaced by a voltage jump. From the relaxation of the electrical current after the voltage jump, information about the kinetics of channel formation is obtained. For a dioleoyllecithin/n-decane membrane the rate constant of association is found to be 2×1014 cm2 mole−1 sec−1, which is by three orders of magnitude below the limiting value of a diffusion-controlled reaction in a two-dimensional system. The dissociation rate constant is equal to 2 sec−1, a value which is consistent with the channel lifetime as obtained from electrical fluctuation measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, G., Delbrück, M. 1968. Reduction of dimensionality in biological diffusion processes.In: Structural Chemistry and Molecular Biology. A. Rich and N. Davidson, editors. p. 198. W. H. Freeman, San Francisco.

    Google Scholar 

  • Andrews, D. M., Manev, E. D., Haydon, D. A. 1970. Composition and energy relationships for some thin lipid films, and the chain conformation in monolayers at liquid-liquid interfaces.Spec. Discussions Faraday Soc. 1:46.

    Google Scholar 

  • Babakov, A. V., Ermiskin, L. N., Liberman, E. A. 1966. Influence of electric field on the capacity of phospholipid membranes.Nature 210:953.

    Google Scholar 

  • Benson, S. W. 1960. The Foundations of Chemical Kinetics. Ch. 15. McGraw-Hill Book Co., Inc., New York.

    Google Scholar 

  • Cogan, U., Shinitzky, M. 1972. Microviscosity and order in the hydrocarbon region of micelles and membranes with fluorescent probes. II. Phospholipid and phospholipid-cholesterol dispersions.Biochemistry (In press).

  • Cone, R. A. 1972. Rotational diffusion of rhodopsin in the visual receptor membrane.Nature New Biol. 236:39.

    PubMed  Google Scholar 

  • Fettiplace, R., Andrews, D. M., Haydon, D. A. 1971. The thickness, composition and structure of some lipid bilayers and natural membranes.J. Membrane Biol. 5:277.

    Google Scholar 

  • Frank, P., Mises, R. von. 1961. Die Differential- und Integralgleichungen der Mechanik und Physik. Vol. II, p. 555. Dover Publications Inc., New York.

    Google Scholar 

  • Frye, L. D., Edidin, E. 1970. The rapid intermixing of cell surface antigens after formation of mouse-human heterocaryons.J. Cell Sci. 7:319.

    PubMed  Google Scholar 

  • Glasstone, G., Laidler, K. J., Eyring, H. 1941. The Theory of Rate Processes. Ch. 9. McGraw-Hill Book Co., Inc., New York.

    Google Scholar 

  • Glickson, J. D., Mayers, D. F., Settine, J. M., Urry, D. W. 1972. Spectroscopie studies on the conformation of gramicidin A′. Proton magnetic resonance assignments, coupling constants, and H−D exchange.Biochemistry 11:477.

    PubMed  Google Scholar 

  • Goodall, M. C. 1970. Structural effects on the action of antibiotics on the ion permeability of lipid bilayers. III. Gramicidin “A” and “S”, and lipid specificity.Biochim. Biophys. Acta 219:471.

    PubMed  Google Scholar 

  • Goodall, M. C. 1971. Thickness dependence in the action of gramicidin A on lipid bilayers.Arch. Biochem. Biophys. 147:129.

    PubMed  Google Scholar 

  • Henderson, P. J. F., McGivan, J. D., Chappel, J. B. 1969. The action of certain antibiotics on mitochondria, erythrocyte and artificial phospholipid membranes.Biochem. J. 111:521.

    PubMed  Google Scholar 

  • Hladky, S. B., Haydon, D. A. 1970. Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics.Nature 225:451.

    PubMed  Google Scholar 

  • Hladky, S. B., Haydon, D. A. 1971. Studies of the unit conductance channel of gramicidin A.In: Molecular Mechanisms of Antibiotic Action on Protein Synthesis and Membranes. E. Munoz, F. García-Ferrandiz and F. Vasquez, editors. Elsevier, Amsterdam. (In press).

    Google Scholar 

  • Hladky, S. B., Haydon, D. A. 1972. Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel.Biochim. Biophys. Acta 274:294.

    PubMed  Google Scholar 

  • Ketterer, B., Neumcke, B., Läuger, P. 1971. Transport mechanism of hydrophobic ions through lipid bilayer membranes.J. Membrane Biol. 5:225.

    Google Scholar 

  • Krasne, S., Eisenman, G., Szabo, G. 1971. Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin, and gramicidin.Science 174:412.

    PubMed  Google Scholar 

  • Läuger, P. 1972. Carrier-mediated ion transport.Science 178:24.

    PubMed  Google Scholar 

  • Läuger, P., Lesslauer, W., Marti, E., Richter, J. 1967. Electrical properties of bimolecular phospholipid membranes.Biochim. Biophys. Acta 135:20.

    PubMed  Google Scholar 

  • Liberman, E. A., Topaly, V. P. 1968. Selective transport of ions through bimolecular phospholipid membranes.Biochim. Biophys. Acta 163:125.

    PubMed  Google Scholar 

  • Mueller, P., Rudin, D. O. 1967. Development of K+−Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics.Biochem. Biophys. Res. Commun. 26:398.

    PubMed  Google Scholar 

  • Myers, V. B., Haydon, D. A. 1972. Ion transfer across lipid membranes in the presence of gramicidin A. II. The ion selectivity.Biochim. Biophys. Acta 274:313.

    PubMed  Google Scholar 

  • Podleski, T., Changeux, J.-P. 1969. Effects associated with permeability changes caused by gramicidin A in the electroplax membrane.Nature 221:541.

    PubMed  Google Scholar 

  • Pressman, B. C. 1965. Induced active transport of ions in mitochondria.Proc. Nat. Acad. Sci. 53:1076.

    PubMed  Google Scholar 

  • Rosen, D., Sutton, A. M. 1968. The effects of a direct current potential bias on the electrical properties of bimolecular lipid membranes.Biochim. Biophys. Acta 163:226.

    PubMed  Google Scholar 

  • Sarges, R., Witkop, B. 1965a. Gramicidin A. V. The structure of valine- and isoleucine-gramicidin A.J. Amer. Chem. Soc. 87:2011.

    Google Scholar 

  • Sarges, R., Witkop, B. 1965b. Gramicidin VII. The structure of valine- and isoleucine-gramicidin B.J. Amer. Chem. Soc. 87:2027.

    Google Scholar 

  • Sarges, R., Witkop, B. 1965c. Gramicidin VIII. The structure of valine- and isoleucine-gramicidin C.Biochemistry 4:2491.

    Google Scholar 

  • Stark, G., Ketterer, B., Benz, R., Läuger, P. 1971. Kinetic analysis of carrier-mediated ion transport through artificial lipid membranes.Biophys. J. 11:981.

    PubMed  Google Scholar 

  • Tosteson, D. C., Andreoli, T. E., Tieffenberg, M., Cook, P. 1968. The effects of macrocyclic compounds on cation transport in sheep red cells and thin and thick lipid membranes.J. Gen. Physiol. 51:373S.

    Google Scholar 

  • Träuble, H., Sackmann, E. 1972. Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. III. Structure of a steroid-lecithin system below and above the lipid-phase transition.J. Amer. Chem. Soc. 94:4499.

    Google Scholar 

  • Urry, D. W. 1971. The gramicidin A transmembrane channel: A proposedπ (L,D) helix.Proc. Nat. Acad. Sci. 68:672.

    PubMed  Google Scholar 

  • Urry, D. W. 1972a. Protein conformation in biomembranes: Optical rotation and absorption of membrane suspensions.Biochim. Biophys. Acta 265:115.

    PubMed  Google Scholar 

  • Urry, D. W. 1972b. A molecular theory of ion-conducting channels: A field-dependent transition between conducting and nonconducting conformations.Proc. Nat. Acad. Sci. 69:1610.

    PubMed  Google Scholar 

  • Urry, D. W., Goodall, M. C., Glickson, J. S., Mayers, D. F. 1971. The gramicidin A transmembrane channel: Characteristics of head-to-head dimerizedπ (L,D) helices.Proc. Nat. Acad. Sci. 68:1907.

    PubMed  Google Scholar 

  • Wenner, C. E., Hackney, J. H. 1969. Mitochondrial energy flux and ion-induced adenosine triphosphatase activity and light-scattering changes mediated by gramicidin.Biochemistry 8:930.

    PubMed  Google Scholar 

  • White, S. A. 1970a. Thickness changes in lipid bilayer membranes.Biochim. Biophys. Acta 196:354.

    PubMed  Google Scholar 

  • White, S. A. 1970b. A study of lipid bilayer membrane stability using precise measurements of specific capacitance.Biophys. J. 10:1127.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bamberg, E., Läuger, P. Channel formation kinetics of gramicidin A in lipid bilayer membranes. J. Membrain Biol. 11, 177–194 (1973). https://doi.org/10.1007/BF01869820

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869820

Keywords

Navigation