Skip to main content
Log in

The cation permeability of erythrocytes in low ionic strength media of various tonicities

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The steady state passive efflux of salt from human red blood cells was measured in various low ionic strength media in which the osmotic pressure ranged from 200 to 600 milliosmolar. Sucrose was used as the nonpenetrating nonelectrolyte. If the flux is plotted against the log of the salt concentration, the data for each tonicity can be fitted by three straight-line segments separated by two sharp inflections, one at low external salt concentrations (0.1 to 0.3mM), confirming observations of LaCelle and Rothstein, and a second at higher salt concentrations (20 to 50 mM). As the osmolarity of the medium is increased, the inflection in every case seems to be uniquely determined by the membrane potential calculated from the Nernst equation with use of the chloride ratio. One inflection occurs at about 45 mV and the second at 170 mV in experiments at five different tonicities. Calculations from the Goldman equation suggest that the inflections represent potential-dependent changes to new permeability states. The osmotic pressure of the medium also influences the permeability. The coefficient is systematically reduced as the osmotic pressure is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agin, D. 1967. Electroneutrality and electrodiffusion in the squid axon.Proc. Nat. Acad. Sci. Wash. 57:1232.

    Google Scholar 

  2. Bang, J. 1909. Physiko-chemische Verhältnisse der Blutkörperchen.Biochem. Z. 16:255.

    Google Scholar 

  3. Barr, L. 1965. Membrane potential profiles and the Goldman equation.J. Theoret. Biol. 9:351.

    Google Scholar 

  4. Bass, L., and W. J. Moore. 1967. Electric fields in perfused nerves.Nature 214:393.

    PubMed  Google Scholar 

  5. Bromberg, P. A., J. Theodore, E. Robin, and W. Jensen. 1965. Anion and hydrogen ion distribution in human blood.J. Lab. Clin. Med. 66:464.

    PubMed  Google Scholar 

  6. Cook, J. S. 1967. Nonsolvent water in human erythrocytes.J. Gen. Physiol. 50:1311.

    Article  PubMed  Google Scholar 

  7. Davson, H. 1939. Studies on the permeability of erythrocytes. VI. The effect of reducing the salt content of the medium surrounding the cell.Biochem. J. 33:389.

    Google Scholar 

  8. Drabkin, D. L. 1945. Hemoglobin, glucose oxygen and water in the erythrocyte.Science 101:445.

    Google Scholar 

  9. Funder, J., and J. O. Wieth. 1966. Chloride and hydrogen ion distribution between human red cells and plasma.Acta Physiol. Scand. 68:234.

    Google Scholar 

  10. Gary-Bobo, C. M. 1967. Nonsolvent water in human erythrocytes and hemoglobin solutions.J. Gen. Physiol. 50:2547.

    PubMed  Google Scholar 

  11. German, B., and J. Wyman. 1937. Titration curves of hemoglobin.J. Biol. Chem. 117:534.

    Google Scholar 

  12. Goldman, D. E. 1943. Potential, impedance, and rectification in membranes.J. Gen. Physiol. 27:37.

    Article  Google Scholar 

  13. — 1964. A molecular structural basis for the excitation properties of axons.Biophys. J. 4:167.

    Google Scholar 

  14. Harris, E. J., and M. Maizels. 1952. Distribution of ions in suspensions of human erythrocytes.J. Physiol. 118:40.

    Google Scholar 

  15. Hill, T. L. 1967. Electric fields and the cooperativity of biological membranes.Proc. Nat. Acad. Sci., Wash. 58:111.

    Google Scholar 

  16. Jacobs, M., and A. K. Parpart. 1932. Osmotic properties of the erythrocyte. V. The rate of hemolysis in hypotonic solutions of electrolytes.Biol. Bull. 63:224.

    Google Scholar 

  17. LaCelle, P., and A. Rothstein. 1966. The passive permeability of the red blood cell to cations.J. Gen. Physiol. 50:171.

    PubMed  Google Scholar 

  18. Lettvin, J. V., W. F. Packard, W. S. McCulloch, and W. Pitts. 1964. A theory of passive ion flux through axon membrane.Nature 202:1338.

    PubMed  Google Scholar 

  19. Mueller, P., and D. O. Rudin. 1963. Induced excitability in reconstituted cell membrane structures.J. Theoret. Biol. 4:268.

    Google Scholar 

  20. ——. 1967. Action potential phenomena in experimental bimolecular lipid membranes.Nature 213:603.

    PubMed  Google Scholar 

  21. Nakao, M., T. Nakao, S. Yamazoe, and H. Yoshikawa. 1961. Adenosine triphosphate and shape of erythrocytes.J. Biochem. 49:487.

    PubMed  Google Scholar 

  22. Ponder, E. 1943. The osmotic behavior of crenated red cells.J. Gen. Physiol. 27:273.

    Google Scholar 

  23. Rich, G.T., R. I. Sha'afi, A. Romualdez, and A. K. Solomon. 1968. Effects of osmolality on the hydraulic permeability coefficient of red cells.J. Gen. Physiol. 52:941.

    PubMed  Google Scholar 

  24. Robinson, R. A., and R. H. Stokes. 1959. Electrolyte Solutions. 2nd rev. edition. 492. London: Butterworth and Co.

    Google Scholar 

  25. Savitz, D., V. W. Sidel, and A. K. Solomon. 1964. Osmotic properties of human red cells.J. Gen. Physiol. 48:79.

    Article  PubMed  Google Scholar 

  26. Stein, W. D. 1967. The Movement of Molecules Across Cell Membrane. p. 225. Academic Press Inc., New York.

    Google Scholar 

  27. Tasaki, I., and I. Singer. 1966. Membrane macromolecules and nerve excitability: A physico-chemical interpretation of excitation in squid giant axons.Ann. N. Y. Acad. Sci. 137:792.

    PubMed  Google Scholar 

  28. Tobias, J. M. 1964. A chemically specified molecular mechanism underlying excitation in nerve: A hypothesis.Nature 203:13.

    PubMed  Google Scholar 

  29. Vodrážka, Z., and J. Čejka. 1961. Interaction of human hemoglobin with hydrogen ion.Biochim. Biophys. Acta 49:502.

    Google Scholar 

  30. Wei, L. Y. 1969. Role of surface dipoles on axon membrane.Science 163:280.

    PubMed  Google Scholar 

  31. Whittam, R. 1964. Transport and Diffusion in Red Blood Cells. p. 76. Williams and Wilkins Co., Baltimore.

    Google Scholar 

  32. Wilbrandt, W. 1940. Die Ionpermeabilität der Erythrocyten in Nichtleiterlösungen.Arch. ges. Physiol. 243:537.

    Google Scholar 

  33. Wilbrandt, W., and H. J. Schatzmann. 1960. Changes in the passive cation permeability of erythrocytes in low electrolyte media, p. 340.In Ciba Foundation Study Group Symposium No. 5. Regulation of the Inorganic Ion Content of Cells. Churchill, London.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Parts of this paper are included in “Passive Cation Efflux from Human Erythrocytes Suspended in Low Ionic Strength Media”, Ph. D. thesis by Jerome A. Donlon, The University of Rochester, 1968.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donlon, J.A., Rothstein, A. The cation permeability of erythrocytes in low ionic strength media of various tonicities. J. Membrain Biol. 1, 37–52 (1969). https://doi.org/10.1007/BF01869773

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869773

Keywords

Navigation