Skip to main content
Log in

Resolution of parameters in the equivalent electrical circuit of the sodium transport mechanism across toad skin

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

In amphibian epithelia, amiloride reduces net sodium transport by hindering the entry of sodium to the active transport mechanism, that is, by increasing the series resistance (R ser ). Theoretically, therefore, analysis of amiloride-induced changes in potential differences and short-circuit current should yield numerical estimates of all the parameters in the equivalent electrical circuit of the sodium transport mechanism.

The concept has been explored by analysis of such changes in toad skins (Xenopus laevis) bathed in hypotonic sulphate Ringer's, after exposure to varying doses of amiloride, or to amphotericin, dinitrophenol or Pitressin.

The estimated values ofR ser , of the electromotive force of the sodium pump (E Na), and of the shunt resistance (R sh ) were independent of the dose of amiloride employed. Skins bathed in hypotonic sulphate Ringer's exhibited a progressive rise inE Na. Amphotericin produced a fall inR ser , while dinitrophenol caused a fall inE Na; washout of the drugs reversed these effects. Pitressin produced a fall in bothR ser andR sh , with a rise inE Na. These results are in accord with earlier suggestions regarding the site(s) of action of these agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baer, J. E., Jones, C. B., Spitzer, A. S., Russo, H. F. 1967. The potassium sparing and natriuretic activity of N-amidino-3,5diamino-6-chloropyrazine carboxamide hydrochloride (amiloride hydrochloride).J. Pharmacol. Exp. Ther. 157:472

    Google Scholar 

  • Bentley, P. J. 1968. Amiloride: A potent inhibitor of sodium transport across the toad bladder.J. Physiol. (London) 195:317

    Google Scholar 

  • Biber, T. U. L. 1971. Effect of changes in transepithelial transport on the uptake of sodium across the outer surface of the frog skin.J. Gen. Physiol. 58:131

    Google Scholar 

  • Crabbé, J., Ehrlich, E. N. 1968. Amiloride and the mode of action of aldosterone on sodium transport across toad bladder and skin.Pfluegers Arch. Gesamte Physiol. 304:284

    Google Scholar 

  • Dörge, A., Nagel, W. 1970. Effect of amiloride on sodium transport in frog skin. II. Sodium transport pool and unidirectional fluxes.Pfluegers Arch. Gesamte Physiol. 321:91

    Google Scholar 

  • Dowd, J. E., Riggs, D. S. 1965. A comparison of estimates of Michaelis-Menten kinetic constants from various linear transformations.J. Biol. Chem. 240:863

    Google Scholar 

  • Ehrlich, E. N., Crabbé, J. 1968. The mechanism of action of amipramizide.Pfluegers Arch. Gesamte Physiol. 302:79

    Google Scholar 

  • Erlij, D., Smith, M. W. 1973. Sodium uptake by frogskin and its modification by inhibitors of transepithelial sodium transport.J. Physiol. (London) 228:221

    Google Scholar 

  • Finn, A. L. 1968. Separate effects of sodium and vasopressin on the sodium pump in toad bladder.Am. J. Physiol. 215:849

    Google Scholar 

  • Finn, A. L. 1970. Effects of potassium and amphotericin B on ion transport in the toad bladder.Amer. J. Physiol. 218:463

    Google Scholar 

  • Finn, A. L. 1971. The kinetics of sodium transport in the toad bladder. I. Dual effects of vasopressin.J. Gen. Physiol. 57:349

    Google Scholar 

  • Finn, A. L., Reuss, L. 1975. Effects of changes in the composition of the serosal solution on the electrical properties of the toad urinary bladder epithelium.J. Physiol. (London) 250:541

    Google Scholar 

  • Fuhrman, F. 1952. Inhibition of active sodium transport in the isolated frog skin.Am. J. Physiol. 171:266

    Google Scholar 

  • Handler, J. S., Orloff, J. 1974. Handbook of Physiology. Section 8 (Renal Physiology), p. 801. American Physiological Society, Washington

    Google Scholar 

  • Helman, S. I., Grantham, J. J., Burg, M. B. 1971. Effect of vasopressin on electrical resistance of renal cortical collecting tubules.Am. J. Physiol. 220:1825

    Google Scholar 

  • Isaacson, L. C., Douglas, R. J., Pepler, J. 1971. Automatic measurement of voltage and short-circuit current across amphibian epithelia.J. Appl. Physiol. 31:298

    Google Scholar 

  • Janaceck, K., Rybova, R. 1970. Nonpolarized frog bladder preparation. The effects of oxytocin.Pfluegers Arch. Gesamte Physiol. 318:294

    Google Scholar 

  • Lichtenstein, N. S., Leaf, A. 1965. Effect of Amphotericin B on the permeability of the toad bladder.J. Clin. Invest. 44:1328

    Google Scholar 

  • Lipton, P. 1972. Effect of changes in osmolarity on sodium transport across isolated toad bladder.Am. J. Physiol. 222:821

    Google Scholar 

  • Morel, F., Bastide, F. 1965. Action de l'ocytocine sur la composante active du transport de sodium par la peau de grenouille.Biochim. Biophys. Acta 94:609

    Google Scholar 

  • Nagel, W., Dörge, A. 1970. Effect of amiloride on sodium transport of frog skin. I. Action on intracellular sodium content.Pfluegers Arch. Gesamte Physiol. 317:84

    Google Scholar 

  • Rawlins, F., Mateu, L., Fragachan, F., Whittembury, G. 1970. Isolated toad skin epithelium: Transport characteristics.Pfluegers Arch. 316:64

    Google Scholar 

  • Reuss, L., Finn, A. L. 1975. Dependence of serosal membrane potential on mucosal membrane potential in toad urinary bladder.Biophys. J. 15:71

    Google Scholar 

  • Riggs, D. S. 1963. The Mathematical Approach to Physiological Problems. Williams and Wilkens, Baltimore

    Google Scholar 

  • Saito, T., Essig, A., Caplan, S. R. 1973. The effect of aldosterone on the energetics of sodium transport in the frog skin.Biochim. Biophys. Acta 318:371

    Google Scholar 

  • Salako, L. A., Smith, A. J. 1970a. Effects of amiloride on active sodium transport by the isolated frog skin; evidence concerning site of action.Br. J. Pharmacol. 38:702

    Google Scholar 

  • Salako, L. A., Smith, A. J. 1970b. Changes in sodium pool and kinetics of sodium transport in frog skin produced by amiloride.Br. J. Pharmacol. 39:99

    Google Scholar 

  • Schoffeniels, E. 1955. Action du 2–4 dinitrophenol sur le flux de sodium a travers la peau de grenouille.Arch. Int. Physiol. 63:361

    Google Scholar 

  • Ussing, H. H., Zerahn, K. 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin.Acta Physiol. Scand. 23:110

    Google Scholar 

  • Yonath, J., Civan, M. M. 1971. Determination of the driving force of the Na+ pump in toad bladder by means of vasopressin.J. Membrane Biol. 5:366

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaacson, L.C. Resolution of parameters in the equivalent electrical circuit of the sodium transport mechanism across toad skin. J. Membrain Biol. 30, 301–317 (1976). https://doi.org/10.1007/BF01869674

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869674

Keywords

Navigation