Skip to main content
Log in

The cole-moore effect in nodal membrane of the frogRana ridibunda: Evidence for fast and slow potassium channels

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The K conductance (g K) kinetics were studied in voltage-clamped frog nodes (Rana ridibunda) in double-pulse experiments. The Cole-Moore translation forg Kt curves associated with different initial potentials (E) was only observed with a small percentage of fibers. The absence of the translation was found to be caused by the involvement of an additional, slow,g K component. This component cannot be attributed to a multiple-state performance of the K channel. It can only be accounted for by a separate, slow K channel, the fast channel being the same as then 4 K channel inR. pipiens.

The slow K channel is characterized by weaker sensitivity to TEA, smaller density, weaker potential (E) dependence, and somewhat more negativeE range of activation than the fast K channel. According to characteristics of the slow K system, three types of fibers were found. In Type I fibers (most numerous) the slow K channel behaves as ann 4 HH channel. In Type II fibers (the second largest group found) the slow K channel obeys the HH kinetics within a certainE range only; beyond this range the exponential decline of the slowg K component is preceded by anE-dependent delay, its kinetics after the delay being the same as those in Type I fibers. In Type III fibers (rare) the slow K channel is lacking, and it is only in these fibers that the Cole-Moore translation of the measuredg Kt curves can be observed directly.

The physiological role of the fast and slow K channel in amphibian nerves is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, G. 1973. The effect of potassium diffusion through the Schwann cell layer on potassium conductance of the squid axon.J. Membrane Biol. 13:353

    Google Scholar 

  • Adelman, W.J., Jr., Palti, Y., Senft, J.P. 1973. Potassium ion accumulation in a periaxonal space and its effect on the measurement of membrane potassium ion conductance.J. Membrane Biol. 13:387

    Google Scholar 

  • Bean, R.S. 1973. Protein-mediated mechanisms of variable ion conductance in thin lipid membranes.In: Membranes — A Series of Advances. G. Eisenman, editor. Vol. 2, pp. 409–477. Lipid Bilayers and Antibiotics. Marcel Dekker, New York

    Google Scholar 

  • Begenisich, T., Stevens, C.F. 1975. How many conductance states do potassium channels have?Biophys. J. 15:843

    PubMed  Google Scholar 

  • Bergman, C. 1969. Seuil d'excitation et regimes d'activité du noeud de Ranvier. Thèse doctorate. Paris

  • Brent, R.P. 1973. Algorithms for minimization without derivatives. Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Bromm, B., Frankenhaeuser, B. 1972. Repetitive discharges of the excitable membrane computed on the basis of voltage clamp data.Pfluegers Arch. 332:21

    Google Scholar 

  • Campbell, R.T., Hille, B. 1976. Kinetic and pharmacological properties of the sodium channel of frog skeletal muscle.J. Gen. Physiol. 67:309

    PubMed  Google Scholar 

  • Chen, Y. 1976. Differentiation of channel models by noise analysis.Biophys. J. 16:965

    PubMed  Google Scholar 

  • Chiu, S.Y. 1977. Inactivation of sodium channels: Second order kinetics in myelinated nerve.J. Physiol. (London) 273:573

    Google Scholar 

  • Cole, K.S., Moore, J. 1960. Potassium ion current in the squid giant axon: Dynamic characteristic.Biophys. J. 1:1

    PubMed  Google Scholar 

  • Dodge, F.A. 1963. A study of ionic permeability changes underlying excitation in myelinated nerve fibers of the frog. Ph.D. Thesis. The Rockefeller Institute, New York

    Google Scholar 

  • Dubois, J.M., Bergman, C. 1975. Potassium accumulation in the perinodal space of frog myelinated axons.Pfluegers Arch. 358:111

    Google Scholar 

  • Erlanger, J., Blair, E.A. 1938. Comparative observations on motor and sensory fibres with special reference to repetitousness.Am. J. Physiol. 212:431

    Google Scholar 

  • Frankenhaeuser, B. 1962. Instantaneous potassium currents in myelinated nerve fibres ofXenopus laevis.J. Physiol. (London) 160:46

    Google Scholar 

  • Frankenhaeuser, B. 1963. A quantitative description of potassium currents in myelinated nerve fibres ofXenopus laevis.J. Physiol. (London) 169:424

    Google Scholar 

  • Frankenhaeuser, B., Huxley, A.F. 1964. The action potential in the myelinated nerve fibre ofXenopus laevis as computed on the basis of voltage clamp data.J. Physiol. (London) 171:302

    Google Scholar 

  • Frankenhaeuser, B., Vallbo, A.B. 1965. Accommodation in myelinated nerve fibres ofXenopus laevis as computed on the basis of voltage clamp data.Acta Physiol. Scand. 63:1

    Google Scholar 

  • Ganot, G., Palti, Y., Stämpfli, R. 1978. Cole-Moore effect in the frog nerve.Proc. Nat. Acad. Sci. USA 75:3254

    PubMed  Google Scholar 

  • Hill, T.L., Chen, Y. 1971a. On the theory of ion transport across the nerve membrane. II. Potassium ion kinetics and cooperativity (withx=4).Proc. Nat. Acad. Sci. USA 68:1711

    PubMed  Google Scholar 

  • Hill, T.L., Chen, Y. 1971b. On the theory of ion transport across the nerve membrane. III. Potassium ion kinetics and cooperativity (withx=4, 6, 8).Proc. Nat. Acad. Sci. USA 68:2488

    PubMed  Google Scholar 

  • Hill, T.L., Chen, Y. 1972. On the theory of ion transport across the nerve membrane. IV. Noise from the open-close kinetics of K+ channels.Biophys. J. 12:948

    PubMed  Google Scholar 

  • Hille, B. 1967a. A pharmacological analysis of the ionic channels of nerve. Ph.D. Thesis. The Rockefeller University, New York

    Google Scholar 

  • Hille, B. 1967b. The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion.J. Gen. Physiol. 50:1287

    PubMed  Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952. A quantitative description of membrane current and its application to conductance and excitation in nerve.J. Physiol. (London) 117:500

    Google Scholar 

  • Honerjäger, P. 1968. Die repetitive Aktivität motorischer und sensibler markhaltiger Nervenfasern des Frosches.Pfluegers Arch. 303:55

    Google Scholar 

  • Hoyt, R.C. 1971. Independence of the sodium and potassium conductance channels. A kinetic argument.Biophys. J. 11:110

    PubMed  Google Scholar 

  • Ilyin, V.I., Katina, I.E., Lonskii, A.V., Makovsky, V.S., Polishchuk, E.V. 1973. Components of potassium current in the node of Ranvier under voltage clamp conditions.In: Membrane Biophysics. D.P. Zablotskaite, E.V. Narushevichus, and A.P. Skersys, editors. P. 286. Kaunas Institute of Medicine, Kaunas (in Russian)

    Google Scholar 

  • Ilyin, V.I., Katina, I.E., Lonskii, A.V., Makovsky, V.S., Polishchuk, E.V. 1974a. The FitzHugh-Cole-Moore effect in the nodal membrane.In: Functional Morphology, Genetics and Biochemistry of the Cell. A.S. Troshin, editor. P. 239 Nauka, Leningrad (in Russian)

    Google Scholar 

  • Ilyin, V.I., Katina, I.E., Lonskii, A.V., Makovsky, V.S., Polishchuck, E.V. 1974b. Activation potential ranges of potassium conductance components of the nodal membrane in the frogRana ridibunda.In: Functional Morphology, Genetics and Biochemistry of the Cell. A.S. Troshin, editor. P. 242. Nauka, Leningrad (in Russian)

    Google Scholar 

  • Ilyin, V.I., Katina, I.E., Lonskii, A.V., Makovsky, V.S., Polishchuk, E.V. 1977. Evidence for two independent components of potassium current in the nodal membrane of the frogRana ridibunda.Dokl. Acad. Nauk SSSR 234:1467 (in Russian)

    Google Scholar 

  • Khodorov, B.I. 1975. General physiology of excitable membranes. Nauka, Moscow (in Russian)

    Google Scholar 

  • Koppenhöfer, E. 1967. Die Wirkung von tetraäthylammoniumchlorid auf die Membranströme Ranvierscher Schnurringe vonXenopus laevis.Pfluegers Arch. 293:34

    Google Scholar 

  • Krylov, B.V., Makovsky, V.S. 1978. Spike frequency adaptation in amphibian sensory fibres is probably due to slow K channels.Nature (London) 275:549

    Google Scholar 

  • Krylov, B.V., Makovsky, V.S. 1979. Ionic mechanism for analog-code transformation in nerve fibre membrane.Dokl. Akad. Nauk SSSR 244:220

    PubMed  Google Scholar 

  • Lonskii, A.V., Ilyin, V.I., Malov, A.M. 1972. An improved voltage clamp method for the node of Ranvier.Physiol. J. SSSR 58:136 (in Russian)

    Google Scholar 

  • Makovsky, V.S. 1975. Comments on the time-dependence of the potassium permeability rate constants in the nodal membrane.Tsitologiya 17:55 (in Russian)

    Google Scholar 

  • Makovsky, V.S. 1979. Potassium channels of the Ranvier node membrane and their role in electric activity of myelinated nerve fibres. Ph.D. Thesis. Leningrad Nuclear Physics Institute, Gatchina, Leningrad District

    Google Scholar 

  • Mullins, L.J. 1968. A single or a dual channel mechanism for nerve excitation.J. Gen. Physiol. 52:550

    PubMed  Google Scholar 

  • Nonner, W. 1969. A new voltage clamp method for Ranvier node.Pfluegers Arch. 309:176

    Google Scholar 

  • Palti, Y., Ganot, G., Stämpfli, R. 1976. Effect of conditioning potential on potassium current kinetics in the frog nerve.Biophys. J. 16:261

    PubMed  Google Scholar 

  • Partridge, L.D., Stevens, C.F. 1976. A mechanism for spike frequency adaptation.J. Physiol. (London) 256:315

    Google Scholar 

  • Schwarz, J.R., Vogel, W. 1971. Potassium inactivation in single myelinated nerve fibres ofXenopus laevis.Pfluegers Arch. 330:61

    Google Scholar 

  • Sigworth, F. 1979. The Cole-Moore delay: Cooperativity among potassium channels?Biophys. J. 25:196a

    Google Scholar 

  • Stämpfli, R., Hille, B. 1976. Electrophysiology of the peripheral myelinated nerve.In: Frog Neurobiology. R. Llinas and W. Precht, editors, pp. 1–32. Springer-Verlag, Berlin-Heidelberg

    Google Scholar 

  • Vallbo, A.B. 1964a. Accommodation of single myelinated nerve fibres fromXenopus laevis related to the type of end organ.Acta Physiol. Scand. 61:413

    Google Scholar 

  • Vallbo, A.B. 1964b. Accommodation related to inactivation of the sodium permeability in single myelinated nerve fibres fromXenopus laevis.Acta Physiol. Scand. 61:429

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilyin, V.I., Katina, I.E., Lonskii, A.V. et al. The cole-moore effect in nodal membrane of the frogRana ridibunda: Evidence for fast and slow potassium channels. J. Membrain Biol. 57, 179–193 (1980). https://doi.org/10.1007/BF01869586

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869586

Key words

Navigation