Skip to main content
Log in

Voltage fluctuations at the frog sartorius motor endplate produced by a covalently attached activator

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The depolarization that develops after covalent attachment of trimethylammonium benzoyl to the dithiothreitol-reduced frog sartorius acetylcholine receptor is accompanied by a small increase in voltage fluctuations. The amplitude of the elementary voltage event produced by the covalently attached activator is about 0.04 μV, almost an order of magnitude below the acetylcholine shot-effect amplitude in the control preparation, and about one-fourth the acetylcholine shot amplitude after disulfide-bond reduction. Spectral density plots of trimethylammonium-benzoyl noise can be analyzed in terms of two relaxation rates that bracket the single rate observed in response to acetylcholine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, P.R. 1974. Kinetics of agonist conductance changes during hyperpolarization at frog endplates.Br. J. Pharmacol. 53:308

    Google Scholar 

  • Adams, P.R. 1977a. Relaxation experiments using bath-applied suberyldicholine.J. Physiol. (London) 268:271

    Google Scholar 

  • Adams, P.R. 1977b. Voltage jump analysis of procaine action at frog end-plate.J. Physiol. (London) 268:291

    Google Scholar 

  • Adams, P.R., Sakmann, B. 1978a. Agonist-triggered endplate channel opening.Biophys. J. 21:53a

    Google Scholar 

  • Adams, P.R., Sakmann, B. 1978b. Decamethonium both opens and blocks endplate channels.Proc. Nat. Acad. Sci. USA 75:2994

    Google Scholar 

  • Anderson, C.R., Stevens, C.F. 1973. Voltage clamp analysis of ACh produced end-plate current fluctuations at frog neuromuscular junction.J. Physiol. (London) 235:655

    Google Scholar 

  • Beam, K.G. 1976a. A voltage-clamp study of the effect of two lidocaine derivatives on the time course of end-plate currents.J. Physiol. (London) 258:279

    Google Scholar 

  • Beam, K.G. 1976b. A quantitative description of end-plate currents in the presence of two lidocaine derivatives.J. Physiol. (London) 258:301

    Google Scholar 

  • Ben-Haim, D., Dreyer, F., Peper, K. 1975. Acetylcholine receptor: Modification of synaptic gating mechanism after treatment with a disulfide bond reducing agent.Pfluegers Arch. 355:19

    Google Scholar 

  • Bloomfield, V., Peller, L., Alberty, R.A. 1962. Multiple intermediates in steady-state enzyme kinetics. III. Analysis of the kinetics of some reactions catalyzed by dehydrogenases.J. Am. Chem. Soc. 84:4375

    Google Scholar 

  • Burgen, A.S.V. 1966. The drug-receptor complex.J. Pharm. Pharmac. 18:137

    Google Scholar 

  • Citri, N. 1973. Conformational adaptability in enzymes.Adv. Enzymol. 37:397

    Google Scholar 

  • Colquhoun, D., Dionne, V.E., Steinbach, J.M., Stevens, C.F. 1975. Conductance of channels opened by acetylcholine-like drugs in muscle end-plate.Nature (London) 253:204

    Google Scholar 

  • Cox, R.N., Karlin, A., Brandt, P.W. 1979a. Activation of the frog sartorius acetylcholine receptor by a covalently attached group.J. Membrane Biol. 51:133

    Google Scholar 

  • Cox, R.N., Karlin, A., Brandt, P.W. 1979b. An analysis of voltage fluctuations at the frog motor endplate in response to a covalently-bonding activator.Biophys. J. 25:303a

    Google Scholar 

  • Del Castillo, J., Katz, B. 1957. Interaction at end-plate receptors between different choline derivatives.Proc. R. Soc. London B. 146:369

    Google Scholar 

  • Dixon, W.J. (editor). 1968. Autocovariance and power spectral analysis.In: BMD Biomedical Computer Programs. University of California Press, Berkeley

    Google Scholar 

  • Dreyer, F., Walther, C., Peper, K. 1976. Junctional and extrajunctional acetylcholine receptors in normal and denervated frog muscle fibres: Noise analysis experiments with different agonists.Pfluegers Arch. 366:1

    Google Scholar 

  • Eigen, M., Hammes, G.G. 1963. Elementary steps in enzyme reactions (as studied by relaxation spectrometry).Adv. Enzymol. 25:1

    Google Scholar 

  • Eisenberg, R.S. 1971. The equivalent circuit of frog skeletal muscle fibers.In: Contractility of Muscle Cells and Related Processes. R.J. Podolsky, editor. pp. 73–88. Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Eisenberg, R.S., Gage, P.W. 1967. Changes in the electrical properties of frog skeletal muscle after disruption of the transverse tubular system.Science 158:1700

    Google Scholar 

  • Falk, G., Fatt, P. 1963. Linear electrical properties of striated muscle fibers observed with intracellular electrodes.Proc. R. Soc. London B. 160:69

    Google Scholar 

  • Fatt, P., Katz, B. 1951. An analysis of the end-plate potential recorded with an intracellular electrode.J. Physiol. (London) 115:320

    Google Scholar 

  • Freygang, W.H., Jr., Rapaport, S.I., Peachey, L.D. 1967. Some relations between changes in the linear electrical properties of striated muscle fibers and changes in ultrastructure.J. Gen. Physiol. 50:2437

    Google Scholar 

  • Gage, P.W., Eisenberg, R.S. 1969. Capacitance of the surface and transverse tubular membrane of frog sartorius muscle fibers.J. Gen. Physiol. 53:265

    Google Scholar 

  • Gage, P.W., McBurney, R.N. 1975. Effects of membrane potential, temperature and neostigmine on the conductance change caused by a quantum of ACh at the toad neuromuscular junction.J. Physiol. (London) 244:385

    Google Scholar 

  • Hammes, G.G. 1968a. Relaxation spectrometry of biological systems.Adv. Protein Chem. 23:1

    Google Scholar 

  • Hammes, G.G. 1968b. Relaxation spectrometry of enzymatic reactions.Acc. Chem. Res. 1:321

    Google Scholar 

  • Karlin, A. 1969. Chemical modification of the active site of the ACh receptor.J. Gen. Physiol. 54:245

    Google Scholar 

  • Karlin, A., Bartels, E. 1966. Effects of blocking sulfhydryl groups and of reducing disulfide bonds on the acetylcholine-activated permeability system of the electroplax.Biochim. Biophys. Acta 126:525

    Google Scholar 

  • Katz, B., Miledi, R. 1970. Membrane noise produced by ACh.Nature (London) 226:962

    Google Scholar 

  • Katz, B. Miledi, R. 1971. Further observations on ACh noise.Nature (London) 232:124

    Google Scholar 

  • Katz, B., Miledi, R. 1972. The statistical nature of the ACh potential and its molecular components.J. Physiol. (London) 224:665

    Google Scholar 

  • Katz, B., Miledi, R. 1973. The characteristics of ‘endplate noise” produced by different depolarizing drugs.J. Physiol. (London) 230:707

    Google Scholar 

  • Landau, E.M., Ben-Haim, D. 1974. ACh noise: Analysis after chemical modification of the receptor.Science 185:944

    Google Scholar 

  • Magleby, K.L., Stevens, C.F. 1972a. The effect of voltage on the time course of end-plate currents.J. Physiol. (London) 233:151

    Google Scholar 

  • Magleby, K.L., Stevens, C.F. 1972b. A quantitative description of end-plate currents.J. Physiol. (London) 233:173

    Google Scholar 

  • Morawetz, H. 1972. Rate of conformational transitions in biological macromolecules and their analogs.Adv. Protein Chem. 26:243

    Google Scholar 

  • Neher, E., Sakmann, B. 1975. Voltage-dependence of drug-induced conductance in frog neuromuscular junction.Proc. Nat. Acad. Sci. USA 72:2140

    Google Scholar 

  • Neher, E., Sakmann, B. 1976. Noise analysis of drug induced voltage clamp currents in denervated frog muscle fibers.J. Physiol. (London) 258:705

    Google Scholar 

  • Neher, E., Steinbach, J.H. 1978. Local anaesthetics transiently block currents through single acetylcholine-receptor channels.J. Physiol. (London) 277:153

    Google Scholar 

  • Peller, L., Alberty, R.A. 1961. Physical chemical aspects of enzyme kineticsIn: Progress in Reaction Kinetics. G. Porter, editor Vol. 1. pp. 235–260. Pergamon Press, New York

    Google Scholar 

  • Ruff, R.L. 1976. Local anesthetic alteration of miniature endplate currents and endplate current fluctuations.Biophys. J. 16:433

    Google Scholar 

  • Ruff, R.L. 1977. A quantitative analysis of local anaesthetic alteration of miniature end-plate currents and end-plate current fluctuations.J. Physiol. (London) 264:89

    Google Scholar 

  • Sakmann, B., Adams, P.R. 1978. Biophysical aspects of agonist action at frog endplate.In: Proceedings of the 7th International Congress of Pharmacology, Paris. J. Jacob, editor. Vol. 1, pp. 81–90. Pergamon Press, Oxford

    Google Scholar 

  • Schneider, M.F. 1970. Linear electrical properties of the transverse tubules and surface membrane of skeletal muscle fibers.J. Gen. Physiol. 56:640

    Google Scholar 

  • Sheridan, R.E., Lester, H.A. 1977. Rates and equilibria at the acetylcholine receptor ofElectrophorus electroplaques.J. Gen. Physiol. 70:187

    Google Scholar 

  • Stevens, C.F. 1975. Molecular basis for postjunctional conductance increases induced by acetylcholine.Cold Spring Harbor Symp. Quant. Biol. 40:169

    Google Scholar 

  • Valdiosera, R., Clausen, C., Eisenberg, R.S. 1974a. Circuit models of the passive electrical properties of frog skeletal muscle fibers.J. Gen. Physiol. 63:432

    Google Scholar 

  • Valdiosera, R., Clausen, C., Eisenberg, R.S. 1974b. Measurement of the impedance of frog skeletal muscle fibers.Biophys. J. 14:295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cox, R.N., Kawai, M., Karlin, A. et al. Voltage fluctuations at the frog sartorius motor endplate produced by a covalently attached activator. J. Membrain Biol. 51, 145–159 (1979). https://doi.org/10.1007/BF01869166

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869166

Keywords

Navigation