Skip to main content
Log in

The role of negative conductances in neuronal subthreshold properties and synaptic integration

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Based on passive cable theory, an increase in membrane conductance produces a decrease in the membrane time constant and input resistance. Unlike the classical leak currents, voltage-dependent currents have a nonlinear behavior which can create regions of negative conductance, despite the increase in membrane conductance (permeability). This negative conductance opposes the effects of the passive membrane conductance on the membrane input resistance and time constant, increasing their values and thereby substantially affecting the amplitude and time course of postsynaptic potentials at the voltage range of the negative conductance. This paradoxical effect has been described for three types of voltage-dependent inward currents: persistent sodium currents, L- and T-type calcium currents and ligand-gated glutamatergic N-methyl-D-aspartate currents. In this review, we describe the impact of the creation of a negative conductance region by these currents on neuronal membrane properties and synaptic integration. We also discuss recent contributions of the quasi-active cable approximation, an extension of the passive cable theory that includes voltage-dependent currents, and its effects on neuronal subthreshold properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrawal N, Hamam BN, Magistretti J, Alonso A, Ragsdale DS (2001) Persistent sodium channel activity mediates subthreshold membrane potential oscillations and low-threshold spikes in rat entorhinal cortex layer V neurons. Neuroscience 102:53–64

    CAS  PubMed  Google Scholar 

  • Andreasen M, Lambert JD (1999) Somatic amplification of distally generated subthreshold EPSPs in rat hippocampal pyramidal neurones. J Physiol 519:85–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boehlen A, Henneberger C, Heinemann U, Erchova I (2012) Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. J Neurophysiol 109:445–463

    PubMed  PubMed Central  Google Scholar 

  • Branco T, Tozer A, Magnus CJ, Sugino K, Tanaka S, Lee AK, Wood JN, Sternson SM (2016) Near-perfect synaptic integration by Na v 1.7 in hypothalamic neurons regulates body weight. Cell 165:1749–1761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buchanan JT, Moore LE, Hill R, Wallén P, Grillner S (1992) Synaptic potentials and transfer functions of lamprey spinal neurons. Biol Cybern 67:123–131

    CAS  PubMed  Google Scholar 

  • Bui TV, Grande G, Rose PK (2008) Multiple modes of amplification of synaptic inhibition to motoneurons by persistent inward currents. J Neurophysiol 99:571–582

    PubMed  Google Scholar 

  • Carter BC, Giessel AJ, Sabatini BL, Bean BP (2012) Transient sodium current at subthreshold voltages: activation by EPSP waveforms. Neuron 75:1081–1093

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ceballos C, Roque A, Leao R (2017) A negative slope conductance of the persistent sodium current prolongs subthreshold depolarizations. Biophys J. doi:10.1016/j.bpj.2017.06.047

  • Connelly WM, Crunelli V, Errington AC (2016) Passive synaptic normalization and input synchrony-dependent amplification of cortical feedback in thalamocortical neuron dendrites. J Neurosci 36:3735–3754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crunelli V, Mayer ML (1984) Mg 2+ dependence of membrane resistance increases evoked by NMDA in hippocampal neurones. Brain Res 311:392–396

    CAS  PubMed  Google Scholar 

  • Curti S, Gomez L, Budelli R, Pereda AE (2008) Subthreshold sodium current underlies essential functional specializations at primary auditory afferents. J Neurophysiol 99:1683–1699

    PubMed  Google Scholar 

  • Dagostin AA, Lovell PV, Hilscher MM, Mello CV, Leão RM (2015) Control of Phasic firing by a background leak current in avian forebrain auditory neurons. Front Cell Neurosci 9:471. doi:10.3389/fncel.2015.00471

    Article  PubMed  PubMed Central  Google Scholar 

  • Deisz RA, Fortin G, Zieglgänsberger W (1991) Voltage dependence of excitatory postsynaptic potentials of rat neocortical neurons. J Neurophysiol 65:371–382

    CAS  PubMed  Google Scholar 

  • Economo MN, Martínez JJ, White JA (2014) Membrane potential-dependent integration of synaptic inputs in entorhinal stellate neurons. Hippocampus 24:1493–1505

    PubMed  PubMed Central  Google Scholar 

  • Enyedi P, Czirják G (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 90:559–605

    CAS  PubMed  Google Scholar 

  • Farries MA, Kita H, Wilson CJ (2010) Dynamic spike threshold and zero membrane slope conductance shape the response of subthalamic neurons to cortical input. J Neurosci 30:13180–13191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez FR, Malerba P, White JA (2015) Non-linear membrane properties in entorhinal cortical stellate cells reduce modulation of input-output responses by voltage fluctuations. PLoS Comput Biol 11:e1004188. doi:10.1371/journal.pcbi.1004188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkelstein A, Mauro A (2011) Physical principles and formalisms of electrical excitability. In: Kandel ER (ed) Comprehensive physiology. American Physiological Society, Bethesda, pp 161–213

    Google Scholar 

  • Fricker D, Miles R (2000) EPSP amplification and the precision of spike timing in hippocampal neurons. Neuron 28:559–569

    CAS  PubMed  Google Scholar 

  • Ghaffari BV, Kouhnavard M, Aihara T, Kitajima T (2015) Mathematical modeling of subthreshold resonant properties in pyloric dilator neurons. Biomed Res Int 2015:21

    Google Scholar 

  • Ghigliazza RM, Holmes P (2004) Minimal models of bursting neurons: how multiple currents, conductances, and timescales affect bifurcation diagrams. SIAM J App Dyn Syst 3:636–670

    Google Scholar 

  • Gillessen T, Alzheimer C (1997) Amplification of EPSPs by low Ni2+- and amiloride-sensitive Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J Neurophysiol 77:1639–1643

    CAS  PubMed  Google Scholar 

  • Goldberg JA, Deister CA, Wilson CJ (2007) Response properties and synchronization of rhythmically firing dendritic neurons. J Neurophysiol 97:208–219

    PubMed  Google Scholar 

  • González-Burgos G, Barrionuevo G (2001) Voltage-gated sodium channels shape subthreshold EPSPs in layer 5 pyramidal neurons from rat prefrontal cortex. J Neurophysiol 86:1671–1684

    PubMed  Google Scholar 

  • Gutfreund Y, Segev I (1995) Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modelling. J Physiol 483:621–640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie JB, Pearce RA (2006) Active and passive membrane properties and intrinsic kinetics shape synaptic inhibition in hippocampal CA1 pyramidal neurons. J Neurosci 26:8559–8569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch JA, Gilbert CD (1991) Synaptic physiology of horizontal connections in the cat's visual cortex. J Neurosci 11:1800–1809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch JA, Oertel D (1988) Intrinsic properties of neurones in the dorsal cochlear nucleus of mice, in vitro. J Physiol 396:535–548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387:869–875

    CAS  PubMed  Google Scholar 

  • Hu H, Vervaeke K, Storm JF (2002) Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. J Physiol 545:783–805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23:216–222

    CAS  PubMed  Google Scholar 

  • Hutcheon B, Miura RM, Puil E (1996a) Models of subthreshold membrane resonance in neocortical neurons. J Neurophysiol 76:698–714

    CAS  PubMed  Google Scholar 

  • Hutcheon B, Miura RM, Puil E (1996b) Subthreshold membrane resonance in neocortical neurons. J Neurophysiol 76:683–697

    CAS  PubMed  Google Scholar 

  • Izhikevich EM (2007) Dynamical systems in neuroscience. MIT Press, Cambridge

    Google Scholar 

  • Jackson WF (2016) Boosting the signal: endothelial inward rectifier K+ channels. Microcirculation 24(3):e12319. doi:10.1111/micc.12319

  • Jacobson GA, Diba K, Yaron-Jakoubovitch A, Oz Y, Koch C, Segev I, Yarom Y (2005) Subthreshold voltage noise of rat neocortical pyramidal neurones. J Physiol 564:145–160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston D, Wu SMS (1994) Foundations of cellular neurophysiology. MIT press, Cambridge, pp 39–53

    Google Scholar 

  • Káli S, Zemankovics R (2012) The effect of dendritic voltage-gated conductances on the neuronal impedance: a quantitative model. J Comput Neurosci 33:257–284

    PubMed  Google Scholar 

  • Klink R, Alonso A (1993) Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons. J Neurophysiol 70:144–157

    CAS  PubMed  Google Scholar 

  • Klink R, Alonso A (1997) Ionic mechanisms of muscarinic depolarization in entorhinal cortex layer II neurons. J Neurophysiol 77:1829–1843

    CAS  PubMed  Google Scholar 

  • Koch C (1984) Cable theory in neurons with active, linearized membranes. Biol Cybern 50:15–33

    CAS  PubMed  Google Scholar 

  • Koch C (1998) Biophysics of computation: information processing in single neurons. Oxford University Press, New York, pp 381–400

    Google Scholar 

  • Leao RM, Li S, Doiron B, Tzounopoulos T (2012) Diverse levels of an inwardly rectifying potassium conductance generate heterogeneous neuronal behavior in a population of dorsal cochlear nucleus pyramidal neurons. J Neurophysiol 107:3008–3019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lipowsky R, Gillessen T, Alzheimer C (1996) Dendritic Na+ channels amplify EPSPs in hippocampal CA1 pyramidal cells. J Neurophysiol 76:2181–2191

    CAS  PubMed  Google Scholar 

  • Liu S, Shipley MT (2008) Intrinsic conductances actively shape excitatory and inhibitory postsynaptic responses in olfactory bulb external tufted cells. J Neurosci 28:10311–10322

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald JF, Porietis AV, Wojtowicz JM (1982) L-aspartic acid induces a region of negative slope conductance in the current-voltage relationship of cultured spinal cord neurons. Brain Res 237:248–253

    CAS  PubMed  Google Scholar 

  • Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18:7613–7624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manuel M, Meunier C, Donnet M, Zytnicki D (2007) Resonant or not, two amplification modes of proprioceptive inputs by persistent inward currents in spinal motoneurons. J Neurosci 27:12977–12988

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathews PJ, Jercog PE, Rinzel J, Scott LL, Golding NL (2010) Control of submillisecond synaptic timing in binaural coincidence detectors by Kv1 channels. Nat Neurosci 13:601–609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto-Makidono Y, Nakayama H, Yamasaki M, Miyazaki T, Kobayashi K, Watanabe M, Kano M, Sakimura K, Hashimoto K (2016) Ionic basis for membrane potential resonance in neurons of the inferior olive. Cell Rep 16:994–1004

    CAS  PubMed  Google Scholar 

  • Moore LE, Buchanan JT, Murphey CR (1995) Localization and interaction of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors of lamprey spinal neurons. Biophys J 68:96–103

  • Moore LE, Buchanan JT, Murphey CR (1994) Anomalous increase in membrane impedance of neurons during NMDA activation. In: Eeckman FH (ed) Computation in neurons and neural systems. Kluwer Academic, Boston, pp 9–14

    Google Scholar 

  • Moore LE, Chub N, Tabak J, O’Donovan M (1999) NMDA-induced dendritic oscillations during a soma voltage clamp of chick spinal neurons. J Neurosci 19:8271–8280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pape HC, Driesang RB (1998) Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex. J Neurophysiol 79:217–226

    CAS  PubMed  Google Scholar 

  • Porres CP, Meyer EM, Grothe B, Felmy F (2011) NMDA currents modulate the synaptic input–output functions of neurons in the dorsal nucleus of the lateral lemniscus in mongolian gerbils. J Neurosci 31:4511–4523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prescott SA, De Koninck Y (2005) Integration time in a subset of spinal lamina I neurons is lengthened by sodium and calcium currents acting synergistically to prolong subthreshold depolarization. J Neurosci 25:4743–4754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Putzier I, Kullmann PH, Horn JP, Levitan ES (2009) Cav1. 3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons. J Neurosci 29:15414–15419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Remme MW, Rinzel J (2011) Role of active dendritic conductances in subthreshold input integration. J Comput Neurosci 31:13–30

    PubMed  Google Scholar 

  • Richardson MJ, Brunel N, Hakim V (2003) From subthreshold to firing-rate resonance. J Neurophysiol 89:2538–2554

    PubMed  Google Scholar 

  • Ries CR, Puil E (1999) Ionic mechanism of isoflurane’s actions on thalamocortical neurons. J Neurophysiol 81:1802–1809

    CAS  PubMed  Google Scholar 

  • Rosenkranz JA, Johnston D (2007) State-dependent modulation of amygdala inputs by dopamine-induced enhancement of sodium currents in layer V entorhinal cortex. J Neurosci 27:7054–7069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rotaru DC, Lewis DA, Gonzalez-Burgos G (2007) Dopamine D1 receptor activation regulates sodium channel-dependent EPSP amplification in rat prefrontal cortex pyramidal neurons. J Physiol 581:981–1000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rotstein HG (2015) Subthreshold amplitude and phase resonance in models of quadratic type: nonlinear effects generated by the interplay of resonant and amplifying currents. J Comput Neurosci 38:325–354

    PubMed  Google Scholar 

  • Rotstein HG (2016) The shaping of intrinsic membrane potential oscillations: positive/negative feedback, ionic resonance/amplification, nonlinearities and time scales. J Comput Neurosci 42:133–166

    PubMed  Google Scholar 

  • Rotstein HG, Nadim F (2014) Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying currents. J Comput Neurosci 37:9–28

    PubMed  Google Scholar 

  • Sabah NH, Leibovic KN (1969) Subthreshold oscillatory responses of the Hodgkin–Huxley cable model for the squid giant axon. Biophys J 9:1206–1222

  • Saint Mleux B, Moore LE (2000) Active Dendritic membrane properties of Xenopus larval spinal neurons analyzed with a whole cell soma voltage clamp. J Neurophysiol 83:1381–1393

  • Schwindt PC, Crill WE (1995) Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. J Neurophysiol 74:2220–2224

    CAS  PubMed  Google Scholar 

  • Scott LL, Mathews PJ, Golding NL (2010) Perisomatic voltage-gated sodium channels actively maintain linear synaptic integration in principal neurons of the medial superior olive. J Neurosci 30:2039–2050

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PD, Brett SE, Luykenaar KD, Sandow SL, Marrelli SP, Vigmond EJ, Welsh DG (2008) KIR channels function as electrical amplifiers in rat vascular smooth muscle. J Physiol 586:1147–1160

    CAS  PubMed  Google Scholar 

  • Stafstrom CE, Schwindt PC, Crill WE (1982) Negative slope conductance due to a persistent subthreshold sodium current in cat neocortical neurons in vitro. Brain Res 236:221–226

    CAS  PubMed  Google Scholar 

  • Stafstrom CE, Schwindt PC, Chubb MC, Crill WE (1985) Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro. J Neurophysiol 53:153–170

    CAS  PubMed  Google Scholar 

  • Stuart G (1999) Voltage–activated sodium channels amplify inhibition in neocortical pyramidal neurons. Nat Neurosci 2:144–150

    CAS  PubMed  Google Scholar 

  • Stuart G, Sakmann B (1995) Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons. Neuron 15:1065–1076

    CAS  PubMed  Google Scholar 

  • Sun H, An S, Luhmann HJ, Kilb W (2014) Resonance properties of GABAergic interneurons in immature GAD67-GFP mouse neocortex. Brain Res 1548:1–11

    CAS  PubMed  Google Scholar 

  • Thomson AM, Girdlestone D, West DC (1988) Voltage-dependent currents prolong single-axon postsynaptic potentials in layer III pyramidal neurons in rat neocortical slices. J Neurophysiol 60:1896–1907

    CAS  PubMed  Google Scholar 

  • Urban NN, Henze DA, Barrionuevo G (1998) Amplification of perforant-path EPSPs in CA3 pyramidal cells by LVA calcium and sodium channels. J Neurophysiol 80:1558–1561

    CAS  PubMed  Google Scholar 

  • Vervaeke K, Hu H, Graham LJ, Storm JF (2006) Contrasting effects of the persistent Na+ current on neuronal excitability and spike timing. Neuron 49:257–270

    CAS  PubMed  Google Scholar 

  • Wessel R, Kristan WB, Kleinfeld D (1999) Supralinear summation of synaptic inputs by an invertebrate neuron: dendritic gain is mediated by an “inward rectifier” K+ current. J Neurosci 19:5875–5888

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams SR, Stuart GJ (2003) Voltage-and site-dependent control of the somatic impact of dendritic IPSPs. J Neurosci 23:7358–7367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson CJ (2005) The mechanism of intrinsic amplification of hyperpolarizations and spontaneous bursting in striatal cholinergic interneurons. Neuron 45:575–585

    CAS  PubMed  Google Scholar 

  • Wu N, Enomoto A, Tanaka S, Hsiao CF, Nykamp DQ, Izhikevich E, Chandler SH (2005) Persistent sodium currents in mesencephalic v neurons participate in burst generation and control of membrane excitability. J Neurophysiol 93:2710–2722

    CAS  PubMed  Google Scholar 

  • Wu N, Hsiao CF, Chandler SH (2001) Membrane resonance and subthreshold membrane oscillations in mesencephalic V neurons: participants in burst generation. J Neurosci 21:3729–3739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada-Hanff J, Bean BP (2015) Activation of Ih and TTX-sensitive sodium current at subthreshold voltages during CA1 pyramidal neuron firing. J Neurophysiol 114:2376–2389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita T, Isa T (2004) Enhancement of excitatory postsynaptic potentials by preceding application of acetylcholine in mesencephalic dopamine neurons. Neurosci Res 49:91–100

    CAS  PubMed  Google Scholar 

  • Yang RH, Wang WT, Chen JY, Xie RG, Hu SJ (2009) Gabapentin selectively reduces persistent sodium current in injured type-a dorsal root ganglion neurons. Pain 143:48–55

    CAS  PubMed  Google Scholar 

  • Yaron-Jakoubovitch A, Jacobson GA, Koch C, Segev I, Yarom Y (2008) A paradoxical isopotentiality: a spatially uniform noise spectrum in neocortical pyramidal cells. Front Cell Neurosci 2:1–9. doi:10.3389/neuro.03.003.2008

  • Yoshii K, Moore LE, Christensen BN (1988) Effect of subthreshold voltage-dependent conductances on the transfer function of branched excitable cells and the conduction of synaptic potentials. J Neurophysiol 59:706–716

    CAS  PubMed  Google Scholar 

  • Zsiros V, Hestrin S (2005) Background synaptic conductance and precision of EPSP-spike coupling at pyramidal cells. J Neurophysiol 93:3248–3256

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by FAPESP (2016/01607-4) and CNPq (470745/2012-6) grants to RML, and FAPESP (2013/07699-0) and CNPq (306251/2014-0) grants to ACR. CCC is a PhD scholarship recipient from CAPES.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonio C. Roque or Ricardo M. Leão.

Ethics declarations

Conflicts of interest

All of the authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of a Special Issue on ‘Latin America’ edited by Pietro Ciancaglini and Rosangela Itri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceballos, C.C., Roque, A.C. & Leão, R.M. The role of negative conductances in neuronal subthreshold properties and synaptic integration. Biophys Rev 9, 827–834 (2017). https://doi.org/10.1007/s12551-017-0300-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-017-0300-8

Keywords

Navigation