Skip to main content
Log in

Current-voltage analysis of apical sodium transport in toad urinary bladder: Effects of inhibitors of transport and metabolism

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The basal-lateral surface of the epithelium of the urinary bladder of the toad (Bufo marinus) was depolarized by exposure of the serosal surface to 85mm KCL and 50mm sucrose. The extent of depolarization appeared to be virtually complete, as evaluated by the invariance in the transepithelial electrical potential difference and conductance on addition of nystatin (a monovalent cation ionophore) to the serosal medium. The Na-specific current (I Na) was defined as the current sensitive to the removal of Na from the mucosal medium or inhibitable by addition of amiloride to this medium. In the presence of the high K-sucrose serosal medium, rapid, serial, stepwise clamping of the transepithelial voltage (V) yielded a curvilinear dependence ofI Na onV; which is taken to represent theI–V curve of the apical Na channels. The constant field equation (Goldman, D.E. 1943;J. Gen. Physiol. 27:37) fits theI–V data points closely, allowing estimates to be made of the permeability to Na of the apical membrane (P Na) and of the intracellular Na activity (Na c ). Exposure of the apical surface to amiloride (5×10−7 m) decreasedP Na in proportion to the decrease inI Na (i.e., ∼70%) but decreased Na c only 25%. In contrast, an equivalent lent reduction inI Na elicited by exposure of the basallateral surface to ouabain was accompanied by only a 20% decrease inP Na and a sixfold increase in Na c . The effects of amiloride onP Na and ouabain on Na c are consistent with the primary pharmacological actions of these drugs. In addition,P Na appears to be under metabolic control, in that 2-deoxyglucose, a specific inhibitor of glycolysis, decreasedI Na andP Na proportionately, and lowered Na c marginally, effects indistinguishable from those obtained with amiloride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bentley, P.J. 1968. Amiloride: A potent inhibitor of sodium transport across the toad bladder.J. Physiol. (London) 195:317

    Google Scholar 

  • Biber, T.U.L. 1971. Effect of changes in transepithelial transport on the uptake of sodium across the outer surface of the frog skin.J. Gen Physiol. 58:131

    PubMed  Google Scholar 

  • Blaustein, M.P. 1977. Effects of internal and external cations and ATP on sodium-calcium and calcium-calcium exchange in squid axons.Biophys. J. 20:79

    PubMed  Google Scholar 

  • Bonting, S.L., Canaday, M.R. 1964. Na−K activated adenosine triphosphatase and sodium transport in toad bladder.Am J. Physiol. 207:1005

    PubMed  Google Scholar 

  • Cass, A., Finkelstein, A., Krespi, V. 1970. The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B.J. Gen. Physiol. 56:100

    Article  PubMed  Google Scholar 

  • Civan, M.M. 1970. Effects of active sodium tansport on currentvoltage relationship of toad bladder.Am. J. Physiol. 219:234

    PubMed  Google Scholar 

  • Civan, M.M., Frazier, H.S. 1968. The site of the stimulatory action of vasopressin on sodium transport in the toad bladder.J. Gen. Physiol. 51:589

    PubMed  Google Scholar 

  • DeLong, J., Civan, M.M. 1978. Dissociation of cellular K+ accumulation from net Na+ transport by toad urinary bladder.J. Membrane Biol. 42:19

    Google Scholar 

  • DeLong, J., Civan, M.M. 1979. Intracellular potassium activity associated with potassium depletion in toad urinary bladder.In: Hormonal Control of Epithelial Transport. J. Bourget, J. Chevalier, M. Parisi, and P. Ripoche, editors. INSERM, Paris

    Google Scholar 

  • DeLorenzo, R.J., Walton, K.G., Curran, P.F., Greengard, P. 1973. Regulation of phosphorylation of a specific protein in toad bladder membrane by antidiuretic hormone and cyclic AMP, and its possible relationship to membrane permeability changes.Proc. Nat. Acad. Sci. USA 70:880

    PubMed  Google Scholar 

  • De Weer, P. 1973. Na+, K+ exchange and Na+, Na+ exchange in the giant axon of the squid.Ann. N. Y. Acad. Sci. 242:434

    Google Scholar 

  • Dörge, A., Nagel, W. 1970. Effect of amiloride on sodium transport in frog skin. II. Sodium transport pool and unidirectional fluxes.

  • Ehrlich, E.N., Crabbé, J. 1968. The mechanism of action of amipramizide.Pfluegers Arch. 302:79

    Google Scholar 

  • Erlij, D., Smith, M.W. 1973. Sodium uptake by frog skin and its modification by inhibitors of transepithelial Na transport.J. Physiol. (London) 228:221

    Google Scholar 

  • Essig, A., Leaf, A. 1963. The role of potassium in active transport of sodium by the toad bladder.J. Gen. Physiol. 46:505

    Google Scholar 

  • Finn, A.L. 1975. Action of ouabain on sodium transport in toad urinary bladder: Evidence for two pathways for sodium entry.J. Gen. Physiol. 65:503

    PubMed  Google Scholar 

  • Frazier, H.S. 1962. The electrical potential profile of the isolated toad bladder.J. Gen. Physiol. 45:515

    PubMed  Google Scholar 

  • Frazier, H.S., Leaf, A. 1963. The electrical characteristics of active sodium transport in the toad bladder.J. Gen. Physiol. 46:491

    Google Scholar 

  • Fuchs, W., Hviid Larsen, E., Lindemann, B. 1977. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137

    Google Scholar 

  • Goldman, D.E. 1943. Potential, impedance and rectification in membranes.J. Gen. Physiol. 27:37

    Google Scholar 

  • Grinstein, S., Erlij, D. 1978. Intracellular Ca++ and the regulation of Na+ transport in the frog skin.Proc. R. Soc. London B 202:353

    Google Scholar 

  • Helman, S.I., Fisher, R.S. 1977. Microelectrode studies of the active Na transport pathway of frog skin.J. Gen. Physiol. 69:571

    PubMed  Google Scholar 

  • Helman, S.I. Nagel, W., Fisher, R.S. 1979. Ouabain on active transepithelial sodium transport in frog skin.J. Gen. Physiol. 74:105

    Google Scholar 

  • Herrera, F.C. 1966. Action of ouabain on sodium transport in the toad urinary bladder.Am J. Physiol. 210:980

    PubMed  Google Scholar 

  • Higgins, J.T., Jr., Gebler, B., Frömter, E. 1977. Electrical properties of amphibian urinary bladder epithelia. II. The cell potential profile inNecturus maculosus.Pfluegers Arch. 371:87

    Google Scholar 

  • Hong, C.D., Essig, A. 1976. Effects of 2-deoxy-d-glucose, amiloride, vasopressin and ouabain on active conductance andE Na in the toad bladder.J. Membrane Biol. 28:121

    Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298

    PubMed  Google Scholar 

  • Larsen, E.H. 1973. Effect of amiloride, cyanide and ouabain on the active transport pathway in toad skin.In: Transport Mechanisms in Epithelia. H.H. Ussing and N.A. Thorn, editors. pp. 131–143. Munsgaard, Copenhagen and Academic Press. New York

    Google Scholar 

  • Lehninger, A.L. 1971.In: Bioenergetics, W.A. Benjamin, Menlo Park, CA

    Google Scholar 

  • Lewis, S.A., Eaton, D.C., Diamond, J.M. 1976. The mechanism of Na+ transport by rabbit urinary bladder.J. Membrane Biol. 28:41

    Google Scholar 

  • Lewis, S.A., Wills, N.K., Eaton, D.C. 1978. Basolateral membrane potential of a tight epithelium: Ionic diffusion and electrogenic pumps.J. Membrane Biol. 41:117

    Google Scholar 

  • Lien, E.L., Goodman, D.B.P., Rasmussen, H. 1975. Effects of an acetyl-coenzyme A carboxylase inhibitor and a sodium-sparing diuretic on aldosterone-stimulated sodium transport, lipid synthesis, and phospholipid fatty acid composition in the toad urinary bladder.Biochemistry 14:2749

    PubMed  Google Scholar 

  • Lindemann, B. 1975. Impalement artifacts in microelectrode recordings of epithelial membrane potentials.Biophys. J. 15:1161

    PubMed  Google Scholar 

  • Lindemann, B. 1977. Circuit analysis of epithelial ion transport. II: Concentration and voltage-dependent conductances and sample calculations.Bioelectrochem. Bioenerg. 4:287

    Google Scholar 

  • Lindemann, B., Van Driessche, W. 1978. The mechanism of Na uptake through Na-selective channels in the epithelium of frog skin. Membrane Transport Processes. Vol. 1. J.F. Hoffman, editor. Raven Press, New York

    Google Scholar 

  • Lipton, P., Edelman, I.S. 1971. Effects of aldosterone and vasopressin on electrolytes of toad bladder epithelial cells.Am. J. Physiol. 221:733

    PubMed  Google Scholar 

  • Liu, A.Y.C., Greengard, P. 1974. Aldosterone-induced increase in protein phosphatase activity of toad bladder.Proc. Nat. Acad. Sci. USA 71:3869

    PubMed  Google Scholar 

  • Macknight, A.D.C. 1977. Contribution of mucosal chloride to chloride in toad bladder epithelial cells.J. Membrane Biol. 36:55

    Google Scholar 

  • Macknight, A.D.C., Civan, M.M., Leaf, A. 1975. The sodium transport pool in toad urinary bladder epithelia cells.J. Membrane Biol. 20:365

    Google Scholar 

  • Macknight, A.D.C., DiBona, D.R., Leaf, A., Civan, M.M. 1971. Measurement of the composition of epithelial cells from the toad urinary bladder.J. Membrane Biol. 6:108

    Google Scholar 

  • MacRobbie, E.A.C., Ussing, H.H. 1966. Osmotic behaviour of the epithelial cells of frog skin.Acta Physiol. Scand. 53:348

    Google Scholar 

  • Marty, A., Finkelstein, A. 1975. Pores formed on lipid bilayer membranes by nystatin.J. Gen. Physiol. 65:515

    Article  PubMed  Google Scholar 

  • Masur, S.A., Holtzman, E., Walter, R. 1972. Hormone stimulated exocytosis in the toad urinary bladder.J. Cell Biol. 52:211

    PubMed  Google Scholar 

  • Nagel, W., Dörge, A. 1970. Effects of amiloride on sodium transport of frog skin. I. Action on intracellular sodium content.Pfluegers Arch. 317:84

    Google Scholar 

  • Nelson, D.J., Ehrenfeld, J., Lindemann, B. 1978. Volume changes and potential artifacts of epithelial cells of frog skin following impalement with microelectrodes filled with 3m KCl.J. Membrane Biol. 40:91

    Google Scholar 

  • Reuss, L., Finn, A.L. 1974. Passive electrical properties of toad urinary bladder epithelium: Intracellular electrical coupling and transepithelial cellular and shunt conductances.J. Gen. Physiol. 64:1

    PubMed  Google Scholar 

  • Reuss, L., Finn, A.L. 1975. Dependence of serosal membrane potential on mucosal membrane potential in toad urinary bladder.Biophys. J. 15:71

    PubMed  Google Scholar 

  • Rick, R., Dörge, A., Macknight, A.D.C., Leaf, A., Thuran, K. 1978. Electron microprobe analysis of the different epithelial cells of toad urinary bladder.J. Membrane Biol. 39:257

    Google Scholar 

  • Rossier, B.C., Wilce, P.A., Edelman, I.S. 1974. Kinetics of RNA labeling in toad bladder epithelium: Effects of aldosterone and other steroids.Proc. Nat. Acad. Sci. USA 71:3101

    PubMed  Google Scholar 

  • Russell, J.M., Eaton, D.C., Brodwick, M.S. 1977. Effects of nystatin on membrane conductance and internal ion activities inAplysia neurons.J. Membrane Biol. 37:137

    Google Scholar 

  • Saito, T., Lief, P.D., Essig, A. 1974. Conductance of active and passive pathways in the toad bladder.Am. J. Physiol. 226:1265

    PubMed  Google Scholar 

  • Scott, W.N., Reich, I.M., Goodman, D.B.P. 1979. Inhibition of fatty acid synthesis prevents incorporation of aldosterone-induced proteins into membranes.J. Biol. Chem. 254:4957

    PubMed  Google Scholar 

  • Spooner, P.M., Edelman, I.S. 1975. Further studies on the effect of aldosterone on electrical resistance of toad bladder.Biochim. Biophys. Acta 406:304

    PubMed  Google Scholar 

  • Taylor, A., Windhager, E.E. 1979. Possible role of cytosalic calcium and Na−Ca exchange in regulation of transepithelial sodium transport.Am. J. Physiol. 236:F505

    PubMed  Google Scholar 

  • Turnheim, K., Frizzell, R.A., Schultz, S.G. 1978. Interaction between cell Na and the amiloride-sensitive sodium entry step in rabbit colon.J. Membrane Biol. 39:233

    Google Scholar 

  • Webb, J.L. 1966.In: Enzymes and Metabolic Inhibitors. Vol. II, p. 386. Academic Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, L.G., Edelman, I.S. & Lindemann, B. Current-voltage analysis of apical sodium transport in toad urinary bladder: Effects of inhibitors of transport and metabolism. J. Membrain Biol. 57, 59–71 (1980). https://doi.org/10.1007/BF01868986

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868986

Keywords

Navigation