Skip to main content
Log in

Ion and water balance in isolated epithelial cells of the abdominal skin of the frogLeptodactylus ocellatus

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Isolated epithelial cells were obtained from abdominal skin of the frogLeptodactylus ocellatus by a trypsination-dissection method. As estimated by nigrosin staining, the amount of damaged cells is only 6.6±0.7 per cent. When washed briefly after incubation the ionic concentrations in these cells were (mm): K+ 14.20±4.0; Na+ 15.8±1.8; and Cl 57.2±5.3. If they are not washed, the concentration of K+ remains essentially the same (131.2±1.4mm) but the Na+ concentration is much higher (38.5±0.9mm). It is shown that a large fraction of Na+ is contained in a compartment that is freely connected with the bathing solution. Ouabain (10−4 m) elicits a marked decrease of K+, a slight decrease of Cl, and an increase of Na+ content. In an equal period, low temperature (3°C) produces a similar effect, although less marked than ouabain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  • Aceves, J., Erlij, D. 1971. Sodium transport across the isolated epithelium of frog skin.J. Physiol. 212:195

    PubMed  Google Scholar 

  • Bray, G. A. 1960. Liquid scintillation for aqueous solutions.Analyt. Biochem. 1:279

    Google Scholar 

  • Burg, H. B., Orloff, J. 1962. Oxygen consumption and active transport in separated renal tubules.Amer. J. Physiol. 203:327

    PubMed  Google Scholar 

  • Cereijido, M., Curran, P. F. 1965. Intracellular electrical potentials in frog skin.J. Gen. Physiol. 48:543

    PubMed  Google Scholar 

  • Curran, P. F., Cereijido, M. 1965. K fluxes in frog skin.J. Gen. Physiol. 48:1011

    PubMed  Google Scholar 

  • De Luca, C. 1965. The use of trypsin for the determination of cellular viability.Exp. Cell. Res. 40:186

    PubMed  Google Scholar 

  • Farquhar, M. G., Palade, G. E. 1965. Cell functions in amphibian skin.J. Cell. Biol. 26:263

    PubMed  Google Scholar 

  • Gatzy, J. T., Berndt, W. O. 1968. Isolated epithelial cells of the toad bladder: Their preparation, oxygen consumption and electrolyte content.J. Gen. Physiol. 51:770

    PubMed  Google Scholar 

  • Giuditta, A., D'Udine, B., Pepe, M., 1971. Uptake of protein by the giant axon of the squid.Nature, New Biol. 229:29

    Google Scholar 

  • Herrera, F. C. 1968. Action of ouabain on bioelectric properties and ion content in toad urinary bladder.Amer. J. Physiol. 215:183

    PubMed  Google Scholar 

  • Kaltenbach, J. P., Kaltenbach, M. H., Lyous, W. B. 1958. Nigrosin as a dye for differentiating live and dead ascites cells.Exp. Cell. Res. 15:112

    PubMed  Google Scholar 

  • Koefoed-Johnsen, V. 1957. The effect ofg-strophanthin (ouabain) on the active transport of sodium through the isolated frog skin.Acta Physiol. Scand. 42 (suppl. 145):87

    Google Scholar 

  • Macknight, A. D. C., Di Bona, D. R., Leaf, A., Civan, M. M. 1971. Measurement of the composition of epithelial cells from the toad urinary bladder.J. Membrane Biol. 6:108

    Google Scholar 

  • Maizels, M., Remington, M. 1959. Percentage of intercellular medium in human erythrocytes centrifuged from albumin and other media.J. Physiol. 145:658

    PubMed  Google Scholar 

  • Reiser, S., Christiansen, P. A. 1971. The properties of the preferential uptake ofl-Leucine by isolated intestinal epithelial cells.Biochim. Biophys. Acta 225:123

    PubMed  Google Scholar 

  • Rotunno, C. A., Zylber, E. A., Cereijido, M. 1973. Ion and water balance in the epithelium of the abdominal skin of the frogLeptodactylus ocellatus.J. Membrane Biol. 13:217

    Google Scholar 

  • Schales, O., Schales, S. S. 1941. A simple and accurate method for the determination of chloride in biological fluids.J. Biol. Chem. 140:879

    Google Scholar 

  • Snow, C., Allen, A. 1970. The release of radioactive nucleic acids and mucoproteins by tripsin and EDTA-acetate treatment of baby-hamster cells in tissue culture.Biochem. J. 119:707

    PubMed  Google Scholar 

  • Weiss, L. 1958. The effects of trypsin on the size, viability and dry mass of sarcoma 37 cells.Exp. Cell. Res. 14:80

    PubMed  Google Scholar 

  • White, H. L., Rolf, D. 1957. Whole body and tissue inulin and sucrose spaces in the rat.Amer. J. Physiol. 188:151

    PubMed  Google Scholar 

  • Zadunaisky, J. A., Candia, O. A. 1962. Active transport of sodium and chloride by the isolated skin of the South American frogLeptodactylus ocellatus.Nature 195:1004

    Google Scholar 

  • Zadunaisky, J. A., Candia, O. A., Chiarandini, D. J. 1963. The origin of the shortcircuit current in the isolated skin of the South American frogLeptodactylus ocellatus.J. Gen. Physiol. 47:393

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zylber, E.A., Rotunno, C.A. & Cereijido, M. Ion and water balance in isolated epithelial cells of the abdominal skin of the frogLeptodactylus ocellatus . J. Membrain Biol. 13, 199–216 (1973). https://doi.org/10.1007/BF01868228

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868228

Keywords

Navigation