Skip to main content
Log in

Studies on isolated subcellular components of cat pancreas

II. A Ca++-dependent interaction between membranes and zymogen granules of cat pancreas

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A membrane and zymogen granule fraction of cat pancreas has been purified on an exponential ficoll-sucrose gradient in a zonal rotor. A Ca++-dependent interaction between the membranes labelled with125I or14C-p-chloromercuribenzoate or N-ethyl(2,3-14C)maleimide and zymogen granules has been observed by measuring the amount of membrane protein, enzymes, and peptides which stay associated with the granules after centrifugation through a 31% sucrose cushion. The interaction was a function of the Ca++ concentration, starting at 1×10−6 m and being saturated at 2×10−5 m of free Ca++ (apparentK m =6.5×10−6 m), and showed preference for Ca++ over other divalent cations with a selectivity sequence (at 0.5mm of total cation concentration): Ca++ 100, Mg++ 35, Ba++ 25, Sr++ 20. The interaction between membranes and granules was specific for cat pancreatic membranes as opposed to cat liver membranes, and for pancreatic zymogen granules as opposed to pancreatic mitochondria. Only 30% of the membrane fraction was bound at saturating levels of zymogen granules and the bound fraction contained alkaline phosphatase, but not other pancreatic plasma membrane markers such as adenylate cyclase or 5′-nucleotidase. After the interaction, removal of Ca++ by the calcium chelator EGTA only partially (about 30%) reversed binding of labelled membranes to the zymogen granules. The process appears to be dependent on the membrane proteins, since brief trypsinization of membranes prior to the assay completely abolished the Ca++-induced interaction. It is concluded that 1) the observed binding may reflect an initial Ca++-dependent event in the process of fusion of zymogen granules with the apical plasma membranes of acinar cells, and 2) protein recognition sites on the interacting membranes are essential for this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramson, M. B., Katzman, R., Gregor, H., Curci, R. 1966. The reactions of cations with aqueous dispersions of phophatidic acid. Determination of stability constants.Biochemistry 5:2207

    PubMed  Google Scholar 

  2. Amsterdam, A., Ohad, I., Schramm, M. 1969. Dynamic changes in the ultrastructure of the acinar cell of the rat parotid gland during the secretory cycle.J. Cell. Biol. 41:753

    PubMed  Google Scholar 

  3. Argent, B. E., Case, R. M., Scratcherd, T. 1971. Stimulation of amylase secretion from the perfused cat pancreas by potassium and other alkali metal ions.J. Physiol (London) 216:611

    Google Scholar 

  4. Aronson, N. N., Jr., Touster, O. 1974. Isolation of rat liver plasma membrane fragments in isotonic sucrose.In: Methods in Enzymology. Vol XXXI, Biomembranes, Part A. S. Fleischer and L. Packer, editors. p. 90. Academic Press, New York, San Francisco, London

    Google Scholar 

  5. Barton, P. G. 1968. The influence of surface charge density of phosphatides on the binding of some cations.J. Biol. Chem. 243:3884

    PubMed  Google Scholar 

  6. Bohr, D. F. 1964. Electrolytes and smooth muscle contraction.Pharmacol. Rev. 16:85

    Google Scholar 

  7. Bülbring, E., Tornita, T. 1970. Calcium and the action potential in smooth muscle.In: Calcium and Cellular Function. A. W. Cuthbert, editor. p. 249. Macmillan, London

    Google Scholar 

  8. Case, R. M., Clausen, T. 1973. The relationship between calcium exchange and enzyme secretion in the isolated rat pancreas.J. Physiol. (London) 235:75

    Google Scholar 

  9. Cohen, I., de Vries, A. 1973. Platelet contractile regulation in an isometric system.Nature (London) 246:36

    Google Scholar 

  10. Dahl, G., Gratzl, M. 1976. Calcium-induced fusion of isolated secretory vesicles from the islet of Langerhans.Cytobiologie 12:344

    Google Scholar 

  11. Daniel, E. E. 1965. Attempted synthesis of data regarding divalent ions in muscle function.In: Muscle. W. M. Paul, E. E. Daniel, C. M. Kay and G. Monckton editors. p. 295. Pergamon Press, Oxford

    Google Scholar 

  12. Davis, B., Lazarus, N. R. 1976. Anin vitro system for studying insulin release caused by secretory granules-plasma membrane interaction: Definition of the system.J. Physiol. (London) 256:709

    Google Scholar 

  13. Diamond, J. M., Wright, E. M. 1969. Biological membranes: The physical basis of ion and nonelectrolyte selectivity.Annu. Rev. Physiol. 31:581

    PubMed  Google Scholar 

  14. Douglas, W. W., Rubin, R. P. 1963. The mechanism of catecholamine release from the adrenal medulla and the role of calcium in stimulus-secretion coupling.J. Physiol. (London) 167:288

    Google Scholar 

  15. Douglas, W. W., Rubin, R. P. 1964. The effects of alkaline earths and other divalent cations on adrenal medullary secretion.J. Physiol. (London) 175:231

    Google Scholar 

  16. Eimerl, S., Savion, N., Heichal, O., Selinger, Z. 1974. Induction of enzyme secretion in rat pancreatic slices using the ionophore A-23187 and calcium. An experimental bypass of the hormone receptor pathway.J. Biol. Chem. 249:3991

    PubMed  Google Scholar 

  17. Gratzl, M., Dahl, G. 1976. Ca2+-induced fusion of Golgi-derived secretory vesicles isolated from rat liver.FEBS Lett 62:142

    PubMed  Google Scholar 

  18. Greenberg, S., Long, J. P., Diecke, F. P. J. 1973. Differentiation of calcium pools utilized in the contractile response of canine arterial and venous smooth muscle to norepinephrine.J. Pharmacol. Exp. Ther. 185:493

    PubMed  Google Scholar 

  19. Heidrich, H.-G., Kinne, R., Kinne-Saffran, E., Hannig, K. 1972. The polarity of the proximal tubule cell in rat kidney. Different surface charges for the brush-border microvilli and plasma membranes from the basal infoldings.J. Cell Biol. 54:232

    PubMed  Google Scholar 

  20. Heilbrunn, L. V., Wiercinski, F. J. 1947. The action of various cations on muscle protoplasm.J. Cell. Comp. Physiol. 29:15

    Google Scholar 

  21. Heisler, S., Fast, D., Tenenhouse, A. 1972. Role of calcium and cAMP in protein secretion from rat exocrine pancreas.Biochim. Biophys. Acta 279:561

    PubMed  Google Scholar 

  22. Hokin, L. E. 1966. Effects of calcium omission on acetylcholine-stimulated amylase secretion and phospholipid synthesis in pigeon pancreas slices.Biochim., Biophys. Acta 115:219

    Google Scholar 

  23. Kondo, S., Schulz, I. 1976. Calcium ion uptake in isolated pancreas cells induced by secretagogues.Biochim. Biophys. Acta 419:76

    PubMed  Google Scholar 

  24. Krishna, G., Weiss, B., Brodie, B. B. 1968. A simple sensitive method for the assay of adenyl cyclase.J. Pharmacol. Exp. Ther. 163:379

    PubMed  Google Scholar 

  25. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265

    PubMed  Google Scholar 

  26. Meldolesi, J., Jamieson, J. D., Palade, G. E. 1971. Composition of cellular membranes in the pancreas of the guinea pig. I. Isolation of membrane fractions.J. Cell Biol. 49:109

    PubMed  Google Scholar 

  27. Miledi, R. 1973. Transmitter release induced by injection of calcium ions into nerve terminals.Proc. R. Soc. B London 183:421

    Google Scholar 

  28. Milutinović, S., Sachs, G., Haase, W., Schulz, I. 1977. Studies on isolated subcellular components of cat pancreas. I. Isolation and enzymatic characterization.J. Membrane Biol. 36:253

    Google Scholar 

  29. Palade, G. E. 1959. Functional changes in the structure of cell components.In: Subcellular Particles. T. Hayashi, editor. p. 64. Ronald Press, New York

    Google Scholar 

  30. Papahadjopoulos, D., Poste, G., Schaeffer, B. E., Vail, W. J. 1974. Membrane fusion and molecular segregation in phospholipid vesicles.Biochim. Biophys. Acta 352:10

    PubMed  Google Scholar 

  31. Portzehl, H., Caldwell, P. C., Rüegg, J. C. 1964. The dependence of contraction and relaxation of muscle fibres from the crabMaia squinado on the internal concentration of free calcium ions.Biochim. Biophys. Acta 79:581

    PubMed  Google Scholar 

  32. Robberecht, P., Christophe, J. 1971. Secretion of hydrolases by perfused fragments or rat pancreas: Effect of calcium.Am. J. Physiol. 220:911

    PubMed  Google Scholar 

  33. Rothman, S. S. 1967. “Non-parallel transport” of enzyme protein by the pancreas.Nature (London) 213:460

    Google Scholar 

  34. Rutten, W. J., De Pont, J. J. H. H. M., Bonting, S. L. 1972. Adenylate cyclase in the rat pancreas; properties and stimulation by hormones.Biochim. Biophys. Acta 274:201

    PubMed  Google Scholar 

  35. Saccomani, G., Shah, G., Spenney, J. G., Sachs, G. 1975. Characterization of gastric mucosal membranes. VIII. The localization of peptides by iodination and phosphorylation.J. Biol. Chem. 250:4802

    PubMed  Google Scholar 

  36. Schulz, I. 1975. The role of extracellular Ca2+ and cyclic nucleotides in the mechanism of enzyme secretion from the cat pancreas.Pfluegers Arch. 360:165

    Google Scholar 

  37. Strum, J. M., Edelman, I. S. 1973. Iodination (125I) of the apical plasma membrane of toad bladder epithelium: Electron-microscopic autoradiography and physiological effects.J. Membrane Biol. 14:17

    Google Scholar 

  38. Van der Bosch, J., Schüdt, C., Pette, D. 1973. Influence of temperature, cholesterol. dipalmitoyllecithin and Ca2+ on the rate of muscle cell fusion.Exp. Cell Res. 82:433

    PubMed  Google Scholar 

  39. Wasserman, R. H., Corradino, R. A., Taylor, A. N. 1968. Vitamin D-dependent calciumbinding protein.J. Biol. Chem. 243:3978

    PubMed  Google Scholar 

  40. Williams, J. A., Cary, P., Moffat, B. 1976. Effects of ions on amylase release by dissociated pancreatic acinar cells.Am. J. Physiol. 231:1562

    PubMed  Google Scholar 

  41. Wizemann, V., Christian, A.-L., Wiechmann, J., Schulz, I. 1974. The distribution of membrane bound enzymes in the acini and ducts of the cat pancreas.Pfluegers Arch. 347:39

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milutinović, S., Argent, B.E., Schulz, I. et al. Studies on isolated subcellular components of cat pancreas. J. Membrain Biol. 36, 281–295 (1977). https://doi.org/10.1007/BF01868155

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868155

Keywords

Navigation