Skip to main content
Log in

Untersuchungen an wachen Hunden über die Einstellung der Natriumbilanz

II. Postprandiale Elektrolyt- und Wasserbilanz bei unterschiedlicher Kochsalzzufuhr

  • Published:
Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere Aims and scope Submit manuscript

Summary

Sodium and potassium excretion, GFR (inulin clearance), ECF (inulin space) and TRBF (electromagnetic flowmeter) were determined in trained dogs 3 hrs after feeding either sodium poor (0.5 mEq/kg) or sodium rich (14 mEq/kg) meals.

Low and high ECF's were induced by 1–4 months of low and high salt feeding, respectively. The animals could be divided into two groups according to prior dietary history.

1. 3 hrs after sodium rich meals animals with low ECF showed a delayed Na excretion (15% of Na load) whereas animals with high ECF excreted Na at high rates (30% of Na load) in the postprandial phase. The latter group received a low sodium diet a few days before the experimental period. This low sodium period was needed in order to make the two groups comparable.

2. The postprandial potassium excretion was augmented in both groups, independently of the size of the ECF prior to the experiment.

3. The postprandial ECF increased independently of dietary history or salt content of meals. However, the extent of increase was less after the salt poor meal (+12.7%) than after the salt rich meal (+25.5%).

4. GFR also increased postprandially. The maximum, observed on the first day of the salt rich period, amounted to 165% of the preprandial value. It returned progressively during the salt rich period to the value seen in dogs with salt poor diet (131%). The return was accompanied by increased sodium excretion. Hence, no direct correlation between GFR and sodium excretion was found in these experiments.

5. TRBF increased postprandially up to 160% of the value of the fasting animal, independently of dietary history and salt content of meals.

6. Calculations of Na distribution revealed 20–144 mEq in the intracellular space in the third postprandial hour. A comparable amount of potassium was lost from this space. If a similar shift in renal cells occurs, then content of sodium within renal cells may be a regulatory factor in Na excretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Annegers, J. H.: Metabolic absorption of water, chloride and hexose from the intestine of dogs. Amer. J. Physiol.200, 107 (1961).

    Google Scholar 

  2. Behrenbeck, D., A. Lengas u.K. Kramer: Die Einstellung einer ausgeglichenen Natriumbilanz bei wachen Hunden in Abhängigkeit des Extracellulärraumes und der extra-intracellulären Elektrolytverteilung. Pflügers Arch. ges. Physiol.289, R 80 (1966).

  3. —— —— u.H. W. Reinhardt: Untersuchungen an wachen Hunden über eine vom Aldosteron unabhängige Regulierung der Natriumbilanz. Pflügers Arch. ges. Physiol.283, R 73 (1965).

    Google Scholar 

  4. Berger, E. Y., G. Kanzaki, M. A. Homer, andJ. M. Steele: Regulation of sodium excretion in normal and salt-depleted subjects. Clin. Sci.9, 205 (1950).

    Google Scholar 

  5. Blythe, W. B., andL. G. Welt: Dissociation between filtered load of sodium and its rate of excretion in the urine. J. clin. Invest.42, 1491 (1964).

    Google Scholar 

  6. Cirksena, W. J., J. H. Dirks, andR. W. Berliner: Effects of thoracic cava obstruction sodium reabsorption to saline infusion. J. clin. Invest.45, 179 (1966).

    PubMed  Google Scholar 

  7. Conn, J. W., D. R. Rovner, E. F. Knoff, E. L. Cohen, andM. T.-Y. Hsueh: Nature of renal escape from the Sodium-retaining effects of aldosterone in primary aldosteronism and in normal subjects. Univ. Hospit. Uni. of Michigan Med. Cent., Ann Arbor, Michigan. J. clin. Endocr.25, 53 (1965).

    PubMed  Google Scholar 

  8. Cort, J. H., J. Rudinger, B. Lichardus, andI. Hagemann: Effect of oxytocin antagonists on the saluresis accompanying carotid occlusion. Amer. J. Physiol.210, 162 (1966).

    PubMed  Google Scholar 

  9. Earley, L. E., andR. M. Friedler: The effects of combined renal hemodynamics and the tubular reabsorption of sodium. J. clin. Invest.45, 542 (1966).

    PubMed  Google Scholar 

  10. Gauer, O. H., u.J. P. Henry: Beitrag zur Homöostase des extraarteriellen Kreislaufes. Volumenregulation als unabhängiger physiologischer Parameter. Klin. Wschr.34, 356 (1956).

    PubMed  Google Scholar 

  11. Green, D. M., andA. Farah: Influence of sodium load on sodium excretion. Amer. J. Physiol.158, 444 (1949).

    Google Scholar 

  12. Irvine, R. O. H., S. J. Saunders, M. D. Milne, andM. A. Crawford: Gradients of potassium and hydrogen ion in potassium-deficient voluntary muscle. Clin. Sci.20, 1 (1960).

    Google Scholar 

  13. Ladd, M.: Renal excretion of sodium and water in man as affected by prehydration, saline infusion, pitression and thiomerin. J. appl. Physiol.4, 602 (1952).

    PubMed  Google Scholar 

  14. ——, andL. G. Raisz: Reponse of the normal dog to dietery sodium chloride. Amer. J. Physiol.159, 149 (1949).

    PubMed  Google Scholar 

  15. Leaf, A., F. C. Bartter, H. F. Santos, andO. Wrong: Evidence in man that urinary electrolyteloss induced by pitressin is a function of water retention. J. clin. Invest.32, 868 (1953).

    PubMed  Google Scholar 

  16. ——, andL. H. Newburgh: Some effects of variation in sodium intake and of different sodium salts in normal subjects. J. clin. Invest.28, 1082 (1949).

    Google Scholar 

  17. ——, andA. R. Mambry: An antidiuretic mechanism not regulated by extracellular fluid tonicity. J. clin. Invest.31, 60 (1952).

    PubMed  Google Scholar 

  18. Levinsky, N., D. G. Davidson, andR. W. Berliner: Effects of reduced glomerular filtration of urine concentration in the presence of antidiuretic hormone. J. clin. Invest.38, 730 (1959).

    PubMed  Google Scholar 

  19. ——, andR. C. Lalone: The mechanism of sodium diuresis after saline loading: evidence for a factor other than increased filtered sodium and decreased aldosterone (abstracts). J. clin. Invest.42, 951 (1963).

    Google Scholar 

  20. Luetscher, J. A., jr., andB. J. Axelrod: Increased aldosteron output during sodium deprivation in normal men. Proc. Soc. exp. Biol. (N.Y.)87, 650 (1954).

    Google Scholar 

  21. Luomanäki, K. S., andS. Salminen: Ion shifts produced by hypertonic sodium chloride infusions in man. Ann. Med. exp. Fenn.42, 72 (1964).

    PubMed  Google Scholar 

  22. Markeley, K. M., M. Bocanegra, G. Morales, andM. Chiapori: Oral sodium loading in normal individuals. J. clin. Invest.36, 303 (1957).

    PubMed  Google Scholar 

  23. Mertz, D. P.: Nierenfunktion bei unterschiedlicher Hydratation unter Berücksichtigung volumenregulatorischer Gesichtspunkte. II. Beziehungen zwischen extracellulärem Flüssigkeitsvolumen und renaler Elektrolytausscheidung. Klin. Wschr.38, 274 (1960).

    Article  Google Scholar 

  24. —— Nierenfunktion bei unterschiedlicher Hydratation unter Berücksichtigung volumenregulatorischer Gesichtspunkte. I. Beziehungen zwischen extracellulärem Flüssigkeitsvolumen und renaler Hämodynamik. Klin. Wschr.38, 269 (1960).

    Article  Google Scholar 

  25. Nizet, A., Y. Cuypers, P. Deetjen, andK. Kramer: Studies on the isolated dog kidney. Pflügers Arch. ges. Physiol. (im Druck).

  26. Orloff, J., andW. D. Blake: Effects of concentrated salt-poor human albumin on metabolism and excretion of water and electrolytes in dogs. Amer. J. Physiol.164, 167 (1951).

    PubMed  Google Scholar 

  27. Rector, F. C., jr.,G. v. Giessen, F. Kil, andD. W. Seldin: Influence of expansion of extracellular volume on tubular reabsorption of sodium independent of changes in glomerular filtration rate and aldosterone activity. J. clin. Invest.43, 341 (1964).

    PubMed  Google Scholar 

  28. Reinhardt, H. W., u.D. Behrenbeck: Untersuchungen an wachen Hunden über die Einstellung der Natriumbilanz. I. Mitteilung: Die Bedeutung des Extracellulärraumes für die Einstellung der Natrium-Tagesbilanz. Pflügers Arch. ges. Physiol.295, 266 (1967).

    Google Scholar 

  29. —— u.D. Behrenbeck: Befunde zur glomerulo-tubulären Natrium-Balance an wachen Hunden. Pflügers Arch. ges. Physiol.279, R 26 (1964).

    Article  Google Scholar 

  30. Selkurt, E. E., andR. S. Post: Renal clearance of sodium in the dog: Effect of increasing sodium load on reabsorptive mechanism. Amer. J. Physiol.162, 639 (1950).

    PubMed  Google Scholar 

  31. Sonnenberg, H., andJ. W. Pearce: Renal response to measured blood volume expansion in differently hydrated dogs. Amer. J. Physiol.203, 344 (1962).

    PubMed  Google Scholar 

  32. Stamler, J., L. Dreifus, L. N. Katz andI. J. Lichton: Reponse to rapid water, sodium and dextran loads of intact ringer's-infused unanesthetized dogs. Amer. J. Physiol.195, 362 (1958).

    PubMed  Google Scholar 

  33. Strauss, M. B., R. K. Davis, J. D. Rosenbaum, andE. C. Rossmeisel: “Water diuresis” produced during recumbency by the intravenous infusion of isotonic saline solution. J. clin. Invest.30, 862 (1951).

    PubMed  Google Scholar 

  34. —— —— —— —— Production of increased renal sodium excretion by the hypotonic expansion of extracellular fluid volume in recumbent subjects. J. clin. Invest.31, 80 (1952).

    PubMed  Google Scholar 

  35. Vaughan, B. E.: Intestinal electrolyte absorption by parallel determination of unidirectional sodium and water transfers. Amer. J. Physiol.198, 1235 (1960).

    PubMed  Google Scholar 

  36. Wardener, H. E., de, I. H. Mills, W. F. Clapham, andC. J. Hayter: Studies on the efferent mechanism of the sodium diuresis which follows the administration of intravenous saline in dog. Clin. Sci.21, 249 (1961).

    PubMed  Google Scholar 

  37. Watson, J. F.: Effects of saline loading on sodium reabsorption in the dog proximal tubule. Amer. J. Physiol.210, 781 (1966).

    PubMed  Google Scholar 

  38. Welt, L. G.: Clinical disorders of hydration and acid-base equilibrium. Boston: Little, Brown & Co. 1955.

    Google Scholar 

  39. ——, andJ. Orloff: The effects of an increase in plasma volume on the metabolism and excretion of water and electrolytes by normal subjects. J. clin. Invest.30, 751 (1951).

    PubMed  Google Scholar 

  40. Wesson, G. L., jr.,W. P. Anslow, L. G. Raisz, andA. A. Bolomey: Effect of subtained expansion of extracellular fluid volume upon filtration rate, renal plasma flow and electrolyte and water excretion in the dog. Amer. J. Physiol.162, 677 (1950).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behrenbeck, D.W., Reinhardt, H.W. Untersuchungen an wachen Hunden über die Einstellung der Natriumbilanz. Pflügers Arch 295, 280–292 (1967). https://doi.org/10.1007/BF01844107

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01844107

Navigation