Skip to main content
Log in

Rhythmic patterns of motor activity after lesions of the central nervous system in man

  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

The behaviour of the motor activity was investigated in a selected group of neurosurgical patients with various cerebral and spinal lesions, as well in a group of healthy controls. Under predetermined standard conditions electromyograms were recorded simultaneously from six muscles, and the time-voltage-integrals of the muscle action potentials were continuously recorded. In this paper rhythmic patterns of the motor activity after lesions of the central nervous system are described.

I. Rhythm With a Frequency of 03–0.8/Minute

In decerebrate states paroxysmal increases in rhythmic sequences with a frequency of 0.3–0.8/minute can occur. The amplitude always predominated on the contralateral side of the body if there was a predominantly unilateral supratentorial lesion present. The shape was characterized in typical cases by a steep rise and an almost exponential fall. A synchronous rhythm of the respiration could appear simultaneously. Other motor rhythms could also appear at the same time. With the simultaneous appearance of different motor rhythms there was clear evidence of their interaction, which corresponded to what v. Holst (1939) designated “relative co-ordination”.

II. Rhythm With a Frequency of 12–18/Minute

In decerebrate states and the apallic syndromes following decerebration rhythmic fluctuations of motor activity with a frequency of 12–18/minute can appear. The amplitudes predominated unilaterally or were changing from side to side. The shapes of the ascending and descending phases were approximately the same. This rhythm has so far only been identified during paroxysmal increases of motor activity. It is possible that this involves a motor rhythm synchronous with respiration, which can appear as a pathological phenomenon after particular lesions of the central nervous system.

III. Rhythm with a frequency of 2–4/Minute

In lesions of the central nervous system at various levels rhythmic fluctuations of the motor activity with a frequency of 2–4/minute can occur. So far they have been detected (i) m large suprasellar tumours, (ii) in decerebrate states and the apallic syndroms following them, and also (iii) in spinal lesions. Although these lesions of the central nervous system are found at widely differing levels, the rhythmic fluctuations of motor activity with a frequency of 0.3/minute are probably identical processes in view of their common features. The predominant amplitudes changed from side to side. The shapes of the ascending and descending phases were approximately the same. The predominating intensity of the rhythm can change the location, in the sense of a “change of focus”, which was first described by Jung (1941) in human tremor. In the spinal lesions the relationship between the rhythm on the right and left sides of the body corresponded to a “relative co-ordination” (v. Holst 1939). In the spinal lesions section of the posterior nerve roots does not abolish the rhythmic fluctuations. The origin of the rhythm is therefore independent of peripheral afferents and of the gamma loop; from this it appears that it cannot be regarded as a reflex phenomenon. The rhythm disappears during sleep and reappears on waking. The rhythmic fluctuations were at times pure fluctuations of tone, but at other times were related to visible movements. A synchronous respiratory rhythm can exist simultaneously. Moreover in the decerebrate state, rhythmic paroxysmal increases of motor activity with a frequency of 0.3–0.8/minute can appear at the same time, which are themselves also related to the rhythm of respiration. In view of the relation of the two different motor rhythms to the synchronous respiratory rhythms which correspond with them it follows that in these cases the respiration can be influenced simultaneously by at least two different rhythms. The 3/minute rhythm seems to be a particular basic rhythm of the motor activity which is normally inhibited by a higher integration mechanism of the central nervous system and which can appear as a manifestation of disinhibition after particular lesions of the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akert, K., The anatomical substrate of sleep. In: Akert, K., Bally, C., Schadè, J. P. (eds.): Progress in brain research, Vol. 18, pp. 9–19. Amsterdam-London-New York: Elsevier. 1965.

    Google Scholar 

  • Babak, E., Über die provisorischen Atemmechanismen der Fischembryonen. Zbl. Physiol.25 (1912), 370–374.

    Google Scholar 

  • Balthasar, K., Morphologie der spinalen Tibialis- und Peronaeus-Kerne bei der Katze. Arch. Psychiatr.188 (1952), 345–378.

    Google Scholar 

  • Barcroft, J., Barron, D. H., The genesis of respiratory movements in the foetus of the sheep. J. Physiol.88 (1937), 56–61.

    Google Scholar 

  • — —, Movements in midfoetal life in the sheep embryo. J. Physiol.91 (1937), 329–351.

    Google Scholar 

  • Barrios, P., Haase, J., Heinrich, W., Fusimotorische Alpha-Reflexe an prätibialen Flexorenspindeln der Katze. Pflügers Arch. Physiol.296 (1967), 49–69.

    Google Scholar 

  • — —, Nassr-Esfahani, H., Noth, J., Ropte, H., Statische und dynamische Aktivitätsänderungen primärer Spindelafferenzen aus den Fußextensoren und prätibialen Flexoren der anästhesierten und deafferentierten Katze nach intercolliculärer Dezerebrierung, tiefer Spinalisierung und Deefferentierung. Pflügers Arch. Physiol.299 (1968), 128–148.

    Google Scholar 

  • Baumgarten, R. von, Rautenhirn (Rhombencephalon). In: Rosemann, H.-U. (ed.): Lehrbuch der Physiologie des Menschen, Bd. II, pp. 695–715. München-Berlin: Urban und Schwarzenberg. 1962.

    Google Scholar 

  • Becker, H., Über spinale motorische Syndrome. Dtsch. Z. Nervenhk.175 (1956), 145–154.

    Google Scholar 

  • Code, C. F., Carlson, H. C., Motor activity of the stomach. In: Code, C. F. (Section ed.) Handbook of Physiology, Section 6: Alimentary Canal, Vol. IV, pp. 1903–1916. Washington, D.C.: American Physiological Society. 1968.

    Google Scholar 

  • Eccles, J. C., Fatt, P., Koketsu, K., Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J. Physiol.126 (1954), 524–562.

    PubMed  Google Scholar 

  • Foley, J. M., Denny-Brown, D., Subacute progressive encephalopathy with bulbar myoclonus. Second International Congress of Neuropathology, London, 1955. Excerpta med., Amsterdam, Section VIII Neurology and Psychiatry8 (1955), 782–784.

    Google Scholar 

  • Frensberg, A., Reflexbewegungen beim Hunde. Pflügers Arch. Physiol.9 (1874), 358–391.

    Google Scholar 

  • Frowein, R. A., Zentrale Atemstörungen bei Schädel-Hirn-Verletzungen und bei Hirntumoren. Einflüsse von Art und Lokalisation der Prozesse intrakranieller Drucksteigerung und Hirnoperation auf die zentrale Steuerung der Atmung. Monogr. aus dem Gesamtgebiete der Neurologie und Psychiatrie (Müller-Rüffenacht, U., Spatz, H., Vogel, P., eds.). Berlin-Göttingen-Heidelberg: Springer. 1963.

    Google Scholar 

  • Gelfan, S., Altered spinal motoneurons in dogs with experimental hind-limb rigidity. J. Neurophysiol. (Springfield)29 (1966), 583–611.

    Google Scholar 

  • —, Tarlov, J. M., Interneurones and rigidity of spinal origin. J. Physiol.146 (1959), 594–617.

    PubMed  Google Scholar 

  • Granit, R., Reflex rebound by posttetanic potentiation. Temporal summation—spasticity. J. Physiol.131 (1956), 32–51.

    PubMed  Google Scholar 

  • —, Über die absteigenden Einflüsse der Formatio reticularis, insbesondere in bezug auf die Gamma-Neuronen. In: Bauer, K. F. (ed.): Medizinische Grundlagenforschung, Bd. II, pp. 39–54. Stuttgart: Thieme. 1959.

    Google Scholar 

  • —, The Basis of Motor Control. London-New York: Academic Press. 1970.

    Google Scholar 

  • Haase, J., Kuckuck, L., Noth, J.: Disinhibition der Extensor-Motoneurone nach intercolliculärer Dezerebrierung. Pflügers Arch. Physiol.311 (1969), 148–158.

    Google Scholar 

  • —, van der Meulen, J. P., Effects of supraspinal stimulation on Renshaw cells belonging to extensor motoneurones. J. Neurophysiol. (Springfield)24 (1961), 510–520.

    Google Scholar 

  • — —, Die spezifische Wirkung der Chloralose auf die recurrente Inhibition tonischer Motoneurone. Pflügers Arch. Physiol.274 (1961), 272–280.

    Google Scholar 

  • Hess, W. R., Hypothalamus and Thalamus. Experimental-Dokumente. Stuttgart: Thieme. 1968.

    Google Scholar 

  • Holst, E. v., Neue Versuche zur Deutung der relativen Koordination bei Fischen. Pflügers Arch. Physiol.240 (1938), 1–43.

    Google Scholar 

  • —, Die relative Koordination als Phänomen und als Methode zentral-nervöser Funktionsanalyse. Erg. Physiol.42 (1939), 228–306.

    Google Scholar 

  • Hongo, T., Personal communication, 1973.

  • Jackson, J. H., Remarks on evolution and dissolution of the nervous system. J. Ment. Sci. (London)33 (1887), 25–48.

    Google Scholar 

  • —, On post-epileptic states: A contribution on the comparative study of insanities. J. Ment. Sci. (London)34 (1888), 349–365.

    Google Scholar 

  • —, Case of tumor of the middle lobe of the cerebellum-cerebellar paralysis with rigidity (cerebellar attitude)—occasional tetanus—like seizures (1871). Brain (London)29 (1906), 425–440.

    Google Scholar 

  • Jung, R., Physiologische Untersuchungen über den Parkinsontremor und andere Zitterformen beim Menschen. Z. Neurol. (Berlin)173 (1941), 263–332.

    Google Scholar 

  • Kaplan, H. A., Ford, D. H., The Brain Vascular System. Amsterdam-London-New York: Elsevier. 1966.

    Google Scholar 

  • Keidel, W. D., Prinzipien biologischer Regelung. In: Keidel, W. D. (ed.): Kurzgefaßtes Lehrbuch der Physiologie, pp. 8–20. Stuttgart: Thieme. 1970.

    Google Scholar 

  • Kling, U., Simulation neuronaler Impulsrhythmen. Kybernetik9 (1971), 123–139.

    PubMed  Google Scholar 

  • - Personal communication, 1973.

  • —, Szekely, G., Simulation of rhythmic nervous activities. Kybernetik5 (1968), 89–103.

    PubMed  Google Scholar 

  • Krogh, E., The effect of acute hypoxia on the motor cells of the spinal cord. Acta physiol. Scand.20 (1950), 263–292.

    PubMed  Google Scholar 

  • Küpfmüller, K., Grundlagen der Informationstheorie und der Kybernetik. In: Gauer, O. H., Kramer, K., Jung, R. (eds.): Physiologie des Menschen, Bd. 10, pp. 195–231. München-Berlin-Wien: Urban u. Schwarzenberg. 1971.

    Google Scholar 

  • Le Mare, D. W., Reflex and rhythmical movements in the dogfish. J. Exper. Biol.13 (1936), 429–442.

    Google Scholar 

  • Lorenz, R., Wirkungen intrakranieller raumfordernder Prozesse auf den Verlauf von Blutdruck und Pulsfrequenz. Habilitationsschrift, Gießen, 1971.

  • Ochwadt, B., Bücherl, E., Kreuzer, H., Loeschcke, H. H., Beeinflussung der Atemsteigerung bei Muskelarbeit durch partiellen neuromuskulären Block (Tubocurarin). Pflügers Arch. Physiol.269 (1959), 613–621.

    Google Scholar 

  • Olefirenko, P. D., Über periodische, mit dem Atemrhythmus synchrone Extensions-bewegungen der Extremitäten bei dezerebrierten Hunden. Fiziol. Z. SSSR23 (1937), 24–33.

    Google Scholar 

  • Pilleri, G., Über das Auftreten von „Kletterbewegungen“ im Endstadium eines Falles von Morbus Alzheimer. Arch. Psychiatr.200 (1960), 455–461.

    Google Scholar 

  • —, Instinktbewegungen des Menschen in biologischer und neuropathologischer Sicht. In: Bilz, R., Petrilowitsch, N. (eds.): Beiträge zur Verhaltensforschung, Akt. Fragen Psychiatr. Neurol.11, 1–37 (1971). Basel: Karger.

    Google Scholar 

  • Pilleri, G., Personal Communication, 1973.

  • —, Poeck, K., Arterhaltende und soziale Instinktbewegungen als neurologische Symptome beim Menschen. Psychiat. Neurol. (Basel)147 (1964), 193–238.

    Google Scholar 

  • Poeck, K., Hubach, H., Rhythmische orale Automatismen bei Dezerebrationszuständen. Dtsch. Z. Nervenhk.185 (1963), 37–52.

    Google Scholar 

  • Renshaw, B., Influence of discharge of motoneurons upon excitation of neighbouring motoneurons. J. Neurophysiol. (Springfield)4 (1941), 167–183.

    Google Scholar 

  • Schaltenbrand, G., Über die Beziehungen zwischen krankhaften Steigerungen des Muskeltonus und dem Schlaf. Pflügers Arch. Physiol.244 (1941), 610–621.

    Google Scholar 

  • —, Die Wandlung unserer Vorstellungen vom Aufbau der menschlichen Motorik. Dtsch. Z. Nervenhk.175 (1956), 118–131.

    Google Scholar 

  • Schepelmann, F., Changes in muscle tone occurring during longterm observation. In: Kuhlendahl, H., Hensell, V. (eds.): Modern Aspects of Neurosurgery, Vol. 3, pp. 233–235. Amsterdam: Excerpta Medica. 1973.

    Google Scholar 

  • —, Motor rhythm in cerebral lesions. Fifth International Congress of Neurological Surgery, Tokyo, 1973. Excerpta Medica ICS293 (1973), 106–107.

    Google Scholar 

  • - Untersuchungen über das Verhalten der motorischen Aktivität nach Schädigungen des Zentralnervensystems beim Menschen. Habilitationsschrift, Gießen, 1975.

  • Seeger, W., Atemstörungen bei intrakraniellen Massenverschiebungen. Acta neurochir. (Wien), Suppl. XVII, 1968.

  • Stern, F., Epidemische Encephalitis (Economosche Krankheit). In: Bumke, O., Foerster, O. (eds.): Handbuch der Neurologie, Bd. 13, pp. 307–500. Berlin: Springer. 1936.

    Google Scholar 

  • Tarlov, I. M., Rigidity in man due to spinal interneuron loss. Arch. Neurol. Psychiatr. (Chicago)16 (1967), 536–543.

    Google Scholar 

  • Vossius, G., Der sogenannte „innere“ Regelkreis der Willkürbewegung. Kybernetik1 (1961), 28–32.

    PubMed  Google Scholar 

  • Wagner, R., Probleme und Beispiele biologischer Regelung. Stuttgart: Thieme. 1954.

    Google Scholar 

  • Walter, W. G.: Intrinsic rhythmus of the brain. In: Magcun, H. W. (Section ed.): Handbook of Physiology, Section 1: Neurophysiology, Vol. I, pp. 279–298. Washington, D.C.: American Physiological Society. 1959.

    Google Scholar 

  • Wiesendanger, M., Rigidity produced by deafferentation. Acta physiol. Scand.62 (1964), 160–168.

    PubMed  Google Scholar 

  • —, Pathophysiology of muscle tone. Berlin-Heidelberg-New York: Springer. 1972.

    Google Scholar 

  • Wilson, S. A. K., On decerebrate rigidity in man and the occurrence of tonic fits. Brain (London)43 (1920), 220–268.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schepelmann, F. Rhythmic patterns of motor activity after lesions of the central nervous system in man. Acta neurochir 49, 153–189 (1979). https://doi.org/10.1007/BF01808957

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01808957

Keywords

Navigation