Skip to main content
Log in

Typical neuronal activity patterns of the relay and nonspecific thalamic nuclei in patients with spasmodic torticollis

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Unit activity of 50 neurons of the nonspecific (Rt and MD) and relay (Voi and Voa) thalamic nuclei was recorded extracellularly during 14 stereotactic surgeries in spasmodic torticollis patients by a microelectrode technique. An analysis with Poincare maps and gap statistics revealed three main neuronal activity patterns: irregular single spikes, low-threshold Ca2+-dependent rhythmic (3–5 Hz) bursts, and combinations of bursts and single spikes. Grouping (in the Voi and Rt nuclei) and long-burst (in the Voa nucleus) patterns were observed in a few cases. The grouping pattern consisted of low-density groups of spikes with random lengths and a tendency to periodicity in the range from 1 to 1.5 Hz. The long-burst pattern consisted of long dense groups of spikes with random lengths and invariant interburst intervals. Main numerical parameters of the three most common neuronal activity patterns were estimated by a parametric analysis. The thalamic nuclei substantially differed in burst activity characteristics, while their average firing rates did not differ significantly. The results may be used for functional identification of the thalamic nuclei during stereotactic neurosurgery in patients with movement disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones, E.G., The Thalamus. Cambridge, 2007.

    Google Scholar 

  2. Steriade, M., Corticothalamic resonance, states of vigilance and mentation, Neuroscience, 2000, vol. 101, p. 243.

    Article  CAS  Google Scholar 

  3. McCormick, D.A. and Bal, T., Sleep and arousal: Thalamocortical mechanisms, Annu. Rev. Neurosci., 1997, vol. 20, p. 185.

    Article  CAS  Google Scholar 

  4. Magnin, M., Morel, A., and Jeanmonod, D., Singleunit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients, Neuroscience, 2000, vol. 96, no. 3, p. 549.

    Article  CAS  Google Scholar 

  5. Rinaldi, P.C., Young, R.F., Albe-Fessard, D., et al., Spontaneous neuronal hyperactivity in the medial and in itralaminar thalamic nuclei of patients with deaferentation pain, J. Neurosurg., 1991, vol. 74, no. 3, p. 415.

    Article  CAS  Google Scholar 

  6. Dostrovsky, J.O., Levy, R., Wu, J.P., et al., Microstimulation-induced inhibition of neuronal firing in human globus pallidus, J. Neurophysiol., 2000, vol. 84, p. 570.

    Article  CAS  Google Scholar 

  7. Ohara, S., Taghva, A., Kim, J.H., and Lenz, F.A., Spontaneous low threshold spike bursting in awake humans is different in different lateral thalamic nuclei, Exp. Brain Res., 2007, vol. 180, no. 2, p. 281.

    Article  CAS  Google Scholar 

  8. Raeva, S.N. and Lukashev, A.O., Specifics of background neuronal activity in the reticular thalamic nucleus of the human brain, Neirofiziologiya, 1989, issue 19, p. 456.

    Google Scholar 

  9. Raeva, S.N., Specifics of background neuronal activity in the parafascicular complex (CM-Pf) of the human thalamus upon changes in the functional state of the brain, Ros. Fiziol. Zh. im. I.M. Sechenova, 2004, vol. 90, no. 6, p. 756.

    CAS  Google Scholar 

  10. Llinas, R. and Steriade, M., Bursting of thalamic neurons and states of vigilance, J. Neurophysiol., 2006, vol. 95, p. 3297.

    Article  Google Scholar 

  11. Sherman, S.M., Tonic and burst firing: Dual modes of thalamocortical relay, Trends Neurosci., 2001, vol. 24, no. 2, p. 122.

    Article  CAS  Google Scholar 

  12. Sherman, S.M. The role of thalamus in cortical function: Not just a simple relay, J. Vis., 2006, vol. 6, p. 28.

    Article  Google Scholar 

  13. Ramcharan, E.J., Gnadt, J.W., and Sherman, S.M., Higher-order thalamic relays burst more than firstorder relays, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, p. 12 236.

    Article  CAS  Google Scholar 

  14. Jeanmonod, D., Magnin, M., and Morel, A., Lowthreshold calcium spike bursts in the human thalamus: Common physiopathology for sensory, motor and limbic positive symptoms, Brain, 1996, vol. 119, p. 363.

    Article  Google Scholar 

  15. Zirh, A.T., Lenz, F.A., Reich, S.G., and Dougherty, P.M., Patterns of bursting occurring in thalamic cells during parkinsonian tremor, Neuroscience, 1997, vol. 83, p. 107.

    Article  Google Scholar 

  16. Raeva, S.N., Mikroelektrodnoe issledovanie aktivnosti neironov golovnogo mozga cheloveka (Microelectrode Study of Neuronal Activity in the Human Brain), Moscow: Nauka, 1977, p. 52.

    Google Scholar 

  17. Kim, J.H., Ohara, S., and Lenz, F.A., Mental arithmetic leads to multiple discrete changes from baseline in the firing patterns of human thalamic neurons, J. Neurophysiol., 2009, vol. 101, p. 2107.

    Article  CAS  Google Scholar 

  18. Sedov, A.S., Medvednik, R.S., and Raeva, S.N., Neuronal mechanisms of voluntary and involuntary movements in the parafascicular complex (CM-Pf) of the thalamus in spasmodic torticollis patients, Ros. Fiziol. Zh. im. I.M. Sechenova, 2010, vol. 95, no. 5, p. 498.

    Google Scholar 

  19. Raeva, S.N., Vainberg, N.A., Dubinin, V.A., et al., Changes in neuronal firing activity of the ventrolateral thalamic nucleus of the human brain upon execution of voluntary movements, Ros. Fiziol. Zh. im. I.M. Sechenova, 1998, vol. 84, no. 7, p. 603.

    CAS  Google Scholar 

  20. Raeva, S., Vainberg, N., and Dubinin, V., Analysis of spontaneous activity patterns of human thalamic ventrolateral neurons and their modifications due to functional brain changes, Neuroscience, 1999, vol. 88, no. 2, p. 365.

    Article  CAS  Google Scholar 

  21. Raeva, S.N., Maslov, P.I., and Kokarev, A.A., Instrument to record activity of individual neurons of human deep brain structures, Fiziol. Zh. SSSR im. I.M. Sechenova, 1973, vol. 29, no. 11, p. 1761.

    Google Scholar 

  22. Schaltenbrand, G. and Baily, P., Introduction to Stereotaxic with an Atlas of the Human Brain, Stuttgart: Thieme, 1959.

    Google Scholar 

  23. Tibshirani, R., Walther, G., and Hastie, T., Estimating the number of clusters in a data set via the gap statistic, J. R. Statist. Soc., 2001, vol. 63, no. 2, p. 411.

    Article  Google Scholar 

  24. Lu, S.M., Guido, W., and Sherman, S.M., Effects of membrane voltage on receptive field properties of lateral geniculate neurons in the cat, J. Physiol., 1992, vol. 68, p. 2185.

    CAS  Google Scholar 

  25. Jahnsen, H. and Llinas, R., Electrophysiological properties of guinea-pig thalamic neurons: An in vitro study, J. Physiol., 1984, vol. 349, p. 205.

    Article  CAS  Google Scholar 

  26. Ramcharan, E.J., Gnadt, J.W., and Sherman, S.M., Burst and tonic firing in thalamic cells of unanesthetized, behaving monkeys, Visual Neurosci., 2000, vol. 17, p. 55.

    Article  CAS  Google Scholar 

  27. Radhakrishnan, V., Tsoukatos, J., Davis, K.D., et al., A comparison of the burst activity of lateral thalamic neurons in chronic pain and non-pain patients, Pain, 1999, vol. 80, no. 3, p. 567.

    Article  CAS  Google Scholar 

  28. Sedov, A.S., Medvednik, R.S., and Raeva, S.N., Role of local synchronization and oscillatory processes of thalamic neurons in goal-directed human behavior, Hum. Physiol., 2014, vol. 40, no. 1, p. 1.

    Article  CAS  Google Scholar 

  29. Raeva, S.N., Role of the parafascicular complex (CMPf) of the human thalamus in neuronal mechanisms of voluntary attention, Ros. Fiziol. Zh. im. I.M. Sechenova, 2005, vol. 91, p. 225.

    CAS  Google Scholar 

  30. Sedov, A.S., Raeva, S.N., and Pavlenko, V.B., Neuronal mechanisms of motor signal transmission in the thalamic ventrooral nucleus in spasmodic torticollis patients, Hum. Physiol., 2014, vol. 40, no. 3, p. 258.

    Article  Google Scholar 

  31. Park, Y.G., Kim, J., and Kim, D., The potential roles of T-type Ca2+ channels in motor coordination, Front. Neural Circuits, 2013, vol. 7, p. 172.

    Article  Google Scholar 

  32. Ohye, C. and Shibazaki, T., Behavior of thalamic neurons in the movement disorders-tremor and dystonia, Basal Ganglia and Thalamus in Health and Movement Disorders, New York: Kluwer Academic/Plenum Publishers, 2001, p. 285.

    Chapter  Google Scholar 

  33. Rodriguez-Oroz, M.C., Rodriguez, M., Guridi, J., et al., The subthalamic nucleus in Parkinson’s disease: Somatotopic organization and physiological characteristics, Brain, 2001, vol. 124, no. 9, p. 1777.

    Article  CAS  Google Scholar 

  34. Pinault, D., The thalamic reticular nucleus: Structure, function and concept, Brain Res. Rev., 2004, vol. 46, p. 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Devetiarov.

Additional information

Original Russian Text © D.A. Devetiarov, U.N. Semenova, L.I. Butiaeva, A.S. Sedov, 2015, published in Fiziologiya Cheloveka, 2015, Vol. 41, No. 3, pp. 63–73.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devetiarov, D.A., Semenova, U.N., Butiaeva, L.I. et al. Typical neuronal activity patterns of the relay and nonspecific thalamic nuclei in patients with spasmodic torticollis. Hum Physiol 41, 280–288 (2015). https://doi.org/10.1134/S0362119715020048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119715020048

Keywords

Navigation