Skip to main content
Log in

Profiles of creatine kinase isoenzyme compositions in single muscle fibres of different types

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Creatine kinase (CK) isoenzyme compositions of different types of single muscle fibres dissected from soleus (SOL) and extensor digitorum longus (EDL) muscles from rats were examined. CK isoenzymes were separated into cytoplasmic (CK-MM, CK-MB, CK-BB) (muscle, brain and hybrid types, respectively) and mitochondrial (m-CK) isoenzymes. Total CK and CK-MM activities showed the highest activities in fast-twitch glycolytic fibres (FG), lower in fast-twitch oxidative glycolytic (FOG) and the lowest in slow-twitch oxidative (SO) fibres. Conversely, the activity of m-CK was highest in SO, lowest in FG and intermediate in FOG fibres. The activity of CK-MB was highest in SO and lower in FOG and FG fibres. However, the activities of total CK and CK isoenzymes in a single muscle fibre type were not distinguishable from those of another type, and the profiles of CK isoenzyme compositions from the same type of single muscle fibres overlapped over a considerable range. The relationships between the four CK isoenzymes activities in single muscle fibres of different types were not similar. These results suggest that CK isoenzymes of single muscle fibres of different types play different roles in intracellular energy metabolism. Therefore, it is supposed that the CK isoenzyme compositions of single muscle fibres are suitable for their contractive and metabolic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apple, F. S., Rogers, M. A., Sherman, W. M., Costill., D. L., Hagerman, F. C. &Ivy, J. L. (1984) Profile of creatine kinase isoenzymes in skeletal muscle of marathon runners.Clin. Chem. 30, 413–16.

    PubMed  Google Scholar 

  • Apple, F. S. &Tesch, P. A. (1989) CK and LD isoenzymes in human single muscle fibers in trained athletes.J. Appl. Physiol. 66, 2717–20.

    PubMed  Google Scholar 

  • Armstrong, R. B. &Phelps, R. O. (1984) Muscle fiber type composition of rat hindlimb.Am. J. Anat. 171, 259–72.

    PubMed  Google Scholar 

  • Bárány, M. (1967) ATPase activity of myosin correlated with speed of muscle shortening.J. Gen. Physiol. 50, 197–218.

    PubMed  Google Scholar 

  • Bessman, S. P. &Geiger, P. J. (1981) Transport of energy in muscle: the phosphorylcreatine shuttle. Science211, 448–52.

    PubMed  Google Scholar 

  • Bessman, S. P., Yang, W. C. T., Geiger, P. J. &Ericksonviitanen, S. (1980) Intimate coupling of creatine phosphokinase and myofibrillar adenosinetriphosphatase.Biochem. Biochim. Res. Commun. 96, 1414–20.

    Google Scholar 

  • Blum, H. E., Deus, B. &Gerok, W. (1983) Mitochondrial creatine kinase from human heart muscle: Purification and characterization of the crystallized isoenzyme.J. Biochem. 94, 1247–57.

    PubMed  Google Scholar 

  • Dawson, D. M., Eppenberger, H. M. &Kaplan, N. O. (1965) Creatine kinase: Evidence for a dimeric structure.Biochem. Biophys.Res.Commun. 21, 346–53.

    PubMed  Google Scholar 

  • Eppenberger, H. M., Dawson, D. M. &Kaplan, N. O. (1967) The comparative enzymology of creatine kinases. I. Isolation and characterization from chicken and rabbit tissues.J. Biol. Chem. 242, 204–9.

    PubMed  Google Scholar 

  • Feeback, L., Locklear, I. &Brumback, R. A. (1988) Metabolic myopathy produced by dinitrofluorobenzene inhibition of creatine phosphokinase.J. Neurol. Sci. 88, 219–28.

    PubMed  Google Scholar 

  • Gellerich, F. &Saks, V. A. (1982) Control of heart mitochondrial oxygen consumption by creatine kinase: The importance of enzyme location.Biochem. Biochim. Res. Commun. 105, 1473–81.

    Google Scholar 

  • Goto, I., Nagamine, M. &Katsuki, S. (1969) Creatine phosphokinase isoenzymes in muscles. Human fetus and patients.Arch. Neuol. 20, 422–29.

    Google Scholar 

  • Goldberg, M. L. (1973) Quantitative assay for submicrogram amounts of protein.Anal. Biochem. 51, 240–46.

    PubMed  Google Scholar 

  • Guth, L. &Samaha, F. (1970) Procedure for the histochemical demonstration of actomyosin ATPase.Exp. Neurol 28, 365–67.

    PubMed  Google Scholar 

  • Jansson, E. &Sylven, C. (1985) Creatine Kinase MB and citrate synthase in type I and type II muscle fibres in trained and untrained men.Eur. J. Appl. Physiol. 54, 207–9.

    Google Scholar 

  • Mercer, D. W. (1974) Separation of tissue and serum creatine kinase isoenzymes by ion exchange column chromatography.Clin. Chem. 20, 36–40.

    PubMed  Google Scholar 

  • Nachlas, M. M., Tsou, K. C., Souza, E. D., Cheng, C. S. &Seligman, A. M. (1957) Cytochemical demonstration of succinate dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole.J. Histochem. Cytochem.5, 420–36.

    PubMed  Google Scholar 

  • Neumeier, D. (1981) Tissue specific and subcellular distribution of creatine kinase isoenzymes. InCreatine kinase isoenzymes (edited byLang, H.), pp. 85–109. New York: Springer Verlag.

    Google Scholar 

  • Peter, J. B., Barnard, R. J., Edgerton, V. R., Gillespie, C. A. &Stempel., K. E. (1972) Metabolic profiles of three fiber types of skeletal muscle in guinea pig and rabbits.Biochemistry 11, 2627–33.

    PubMed  Google Scholar 

  • Sadeh, M., Stern L. Z., Czyzewski, K., Finley, P. R. &Russel., D. H. (1984) Alterations in creatine kinase, ornithine decarboxylase, and transglutaminase during muscle regeneration.Life Sci. 34, 483–88.

    PubMed  Google Scholar 

  • Saks, V. A., Chernousova, G. B., Voronkov, I. I., Smirnov, V. N. &Chazov, E. I. (1974) Study of energy transport mechanism in myocardial cells.Cir. Res. 34–35 (Suppl. III), 138–49.

    Google Scholar 

  • Saks, V. A., Rosenshtraukh, L. V., Smirnov, V. N. &Chazov, E. I. (1978) Role of creatine phosphokinase in cellular function and metabolism.Can. J. Physiol. Pharmacol. 56, 691–706.

    PubMed  Google Scholar 

  • Schlegal., J., Zurbriggen, B., Wegmann, G., Wyss, M., Eppenberger, H. M. &Wallimann, T. (1988) Native mitochondrial creatine kinase forms octameric structures. I. Isolation of two interconvertible mitochondrial creatine kinase forms, dimeric and octameric mitochondrial creatine kinase: Characterization, localization, and structure-function relationships.J. Biol. Chem. 263 16942–53.

    PubMed  Google Scholar 

  • Schmitt, T. &Pette, D. (1985) Increased mitochondrial creatine kinase in chronically stimulated fast-twitch rabbit muscle.FEBS Lett. 188, 341–44.

    PubMed  Google Scholar 

  • Scholte, H. R., Weijers, P. J. &Wit-Peeters, E. M. (1973) The localization of mitochondrial creatine kinase, and its use for the determination of the sidedness of submitochondrial particles.Biochim. Biophys. Acta 291, 764–73.

    PubMed  Google Scholar 

  • Sylven, C., Jansson, E., Kallner, A. &Book, K. (1984) Human creatine kinase. Isoenzymes and logistics of energy distribution.Scand. J. Clin. Lab. Invest. 44, 611–15.

    PubMed  Google Scholar 

  • Takahashi, K., Ushikubo, S., Oimomi, M. &Shinko, T. (1972) Creatine phosphokinase isoenzyme of human heart muscle and skeletal muscle.Clin. Chim. Acta 38, 285–90.

    PubMed  Google Scholar 

  • Takekura, H. &Yoshioka, T. (1987) Determination of metabolic profiles on single muscle fibres of different types.J. Muscle Res Cell Motil. 8, 342–48.

    PubMed  Google Scholar 

  • Takekura, H. &Yoshioka, T. (1989) Ultrastructural and metabolic profiles on single muscle fibers of different types after hindlimb suspension in rats.Jpn. J. Physiol. 39, 385–396.

    PubMed  Google Scholar 

  • Tesch, P. A., Thorsson, A. &Fujitsuka, N. (1989) Creatine phosphate in fiber types of skeletal muscle before and after exhaustive exercise.J. Appl. Physiol. 66, 1756–59.

    PubMed  Google Scholar 

  • Turner, D. C., Wallimann, T. &Eppenberger, H. M. (1973) A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase.Proc. Natl. Acad. Sci. USA 70, 702–5.

    PubMed  Google Scholar 

  • Wallimann, T., Pelloni, G., Turner, D. C. &Eppenberger, H. M. (1978) Movement antibodies against MM-creatine kinase remove the M line from myofibrils.Proc. Natl. Acad. Sci. USA 75, 4296–300.

    PubMed  Google Scholar 

  • Wallimann, T., Schlosser, T. &Eppenberger, H. M. (1984) Function of M-line-bound creatine kinase as intramyofibrillar ATP regenerator at the receiving end of the phosphorylcreatine shuttle in muscle.J. Biol. Chem. 259, 5238–46.

    PubMed  Google Scholar 

  • Wallimann, T., Schnyder, T., Schlegel., J., Wyss, M., Wegmann, G., Rossi, A.-M., Hemmer, W., Eppenberger, H. M. andQuest, A. F. G. (1989) Muscle energetic. InProgress in clinical and biological research (edited by Paul, R. J., Elzinga, G. and Yamada, K.), pp 159–76. New York: Alan R. Liss, Inc.

    Google Scholar 

  • Weselakc, R. J. &Jacobs, H. K. (1983) Separation of cytoplasmic and mitochondrial isoenzymes of creatine kinase by hydrophobic interaction chromatography.Clin. Chim. Acta 134, 357–61.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, K., Yoshioka, T. Profiles of creatine kinase isoenzyme compositions in single muscle fibres of different types. J Muscle Res Cell Motil 12, 37–44 (1991). https://doi.org/10.1007/BF01781172

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01781172

Keywords

Navigation