Skip to main content
Log in

Classification system for immobilization techniques

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Biotechnological processes call for an overall process optimization. One of the major possibilities of optimizing biotechnological processes lies in immobilization technologies, which may increase productivities and product concentrations. This paper gives a systematic approach to the various immobilization techniques reported in literature. The most important levels of influence on overall process performance are considered within a classification system by three criteria: Substrates and products flow pattern criterion, catalyst criterion and apparatus criterion. Some important immobilization systems are discussed, and the classification system is applied to these examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Radovich, J.M.: Mass transfer effects in fermentations using immobilized whole cells. Enzyme Microb. Technol. 7 (1985) 2–10

    Article  CAS  Google Scholar 

  2. Mattiasson, B. (ed): Immobilized Microbial Cells and Organelles, vol. 1–2, Boca Raton, Florida: CRC Press 1983

    Google Scholar 

  3. Krischke, W.;Schröder, M.;Trösch, W.: Continuous production of L-lactic acid from whey permeate by immobilized Lactobacilus casei subsp. casei. Appl. Microbiol. Biotechnol. 341 (1991) 573–578

    Article  Google Scholar 

  4. Goncalves, L.M.D.;Barreto, M.T.O.;Xavier, A.M.B.R.;Carrondo, M.J.T.;Klein, J.: Inert supports for lactic acid fermentation — a technological assessment. Appl. Microbiol. Biotechnol. 38 (1992) 305–311

    Article  CAS  Google Scholar 

  5. Paar, H.;Narodoslawsky, M.;Moser, A.: Systematic simulation of a tubular recycle reactor on the basis of pilot plant experiments. Bioproces Eng. 5 (1990) 275–281

    Article  Google Scholar 

  6. Vick Roy, T.B.;Blanch, H.W.;Wilke, C.R.: Lactic Acid Production by Lactobacillus delbreucki in a Hollow Fiber Fermenter. Biotechnol. Lett. 4, Nr 8 (1982) 483–488

    Article  Google Scholar 

  7. Major, N.C.;Bull, A.T.: The Physiology of Lactate Production by Lactobacillus delbreucki in a Chemostat with Cell Recycle. Biotechnol. Bioeng. 34 (1989) 592–599

    Article  CAS  Google Scholar 

  8. Hjörleifsdottir, S.;Seevaratnam, S.;Holst, O.;Mattiasson, B.: Effects of complete cell-recycling on product formation by Lactobacillus casei ssp. rhamnosus in continuous cultures. Curr. Microbiol. 20 (1990) 287–292

    Article  Google Scholar 

  9. Bibal, B.;Vayssier, Y.;Goma, G.;Pareilleux, A.: High-Concentration Cultivation of Lactobacillus cremoris in a Cell-Recycle Reactor. Biotechnol. Bioeng. 37 (1991) 746–754

    Article  CAS  Google Scholar 

  10. Holst, O.;Hansson, L.;Berg, A.C.;Mattiasson, B.: Continuous culture with complete cell recycle to obtain high cell densities in product inhibited cultures; cultivation of Streptococcus lactis for production of superoxide dismutase. Appl. Microbiol. Biotechnol. 23 (1985) 10–14

    Article  CAS  Google Scholar 

  11. Hannoun, B.J.M.;Stephanopoulos, G.: Diffusion Coefficients of Glucose and Ethanol in Cell-free and Cell-occupied Calcium-alginate Membranes. Biotechnol. Bioeng. 28 (1986) 829–835

    Article  CAS  Google Scholar 

  12. Furui, M.;Yamashita, K.: Diffusion Coefficients of Solutes in Immobilized Cell Catalysts. J Ferment. Technol. 53, No 2 (1985) 167–173

    Google Scholar 

  13. Audet, P.;Paquin, C.;Lacroix, C.: Sugar Utilization and Acid Production by Free and Entrapped Cells of Streptococcus salivarius subsp. thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, and Lactococcus lactis subsp. lactis in a Whey Permete Medium. Appl. Environ. Microbiol. 55, No 1 (1989) 185–189

    CAS  Google Scholar 

  14. Arnaud, J.P.;Lacroix, C.: Diffusion of Lactose in k-Carrageenan/Locust Bean Gum Gel Beads With or Without Entrapped Growing Lactic Acid Bacteria. Biotechnol. Bioeng. 38 (1991) 1041–1049

    Article  CAS  Google Scholar 

  15. Monbouquette, H.G.;Sayles, G.D.;Ollis, D.F.: Immobilized Cell Biocatalyst Activation and Pseudo-Steady-State Behavior: Model and Experiment. Biotechnol. Bioeng. 35 (1990) 609–629

    Article  CAS  Google Scholar 

  16. Guoqiang, D.;Kaul, R.;Mattiasson, B.: Evaluation of alginateimmobilized Lactobacillus casei for lactate production. Appl. Microbiol. Biotecnol. 36 (1991) 309–314

    Article  Google Scholar 

  17. Boyaval, P.;Goulet, J.: Optimal conditions for production of lactic acid from cheese whey permeate by Ca-algainate-entrapped Lactobacillus helveticus. Enzyme Microb. Technol. 1 (1988) 725–72

    Article  Google Scholar 

  18. Kaul, R.;Mattiasson, B.: Extractive Bioconversions in Aqueous Two-Phase Systems. Bioprocess Technol. 11 (1991) 173–188

    CAS  Google Scholar 

  19. Albertsson, P.A.: Partition of Cell Particles and Macromolecules, 3rd edit. New York: Wiley Interscience 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katzbauer, B., Narodoslawsky, M. & Moser, A. Classification system for immobilization techniques. Bioprocess Engineering 12, 173–179 (1995). https://doi.org/10.1007/BF01767463

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01767463

Keywords

Navigation