Skip to main content
Log in

Changes in sarcoplasmic metabolite concentrations and pH associated with the catch contraction and relaxation of the anterior byssus retractor muscle ofMytilus edulis measured by phosphorus-31 nuclear magnetic resonance

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

The sarcoplasmic concentrations of phosphorus metabolites and pH (pHin) were measured in the anterior byssus retractor muscle (ABRM) ofMytilus edulis by31P nuclear magnetic resonance spectroscopy. During an active contraction induced by 10−3 m acetylcholine, the concentration of arginine phosphate ([Arg-P]in) decreased from the resting value of 7.47±0.26 (mean±se,n=8) to 6.67±0.29 (n=6) μmol g−1, and that of inorganic phosphate (Pi) consistently increased from 0.84±0.06 (n=7) to 1.61±0.12 (n=5) μmol g−1. In the ‘catch’ state following the active contraction, these concentrations were close to their resting levels, indicating that the catch is an inactive state. 5-hydroxytryptamine caused a rapid relaxation of the catch, which was associated with a slight decrease in [Arg-P]in and an increase in pHin by ca 0.2 units. The sarcoplasmic concentration of ATP (mean, 1.6μmol g−1) did not change throughout the contraction-relaxation cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achazi, R. K. (1979) Phosphorylation of molluscan paramyosin.Pflügers Arch. 379, 197–201.

    Google Scholar 

  • Ashley, C. C., Ishii, N. &Simpson, A. W. M. (1989) Intracellular pH (pHi) is not altered by agents which promote contraction and relaxation in smooth muscle cells isolated from the ABRM ofMytilus edulis.J. Physiol. (Lond.) 415, 102P.

    Google Scholar 

  • Baguet, F. &Gillis, J. M. (1968) Energy cost of tonic contraction in a lamellibranch catch muscle.J. Physiol. (Lond.) 198, 127–43.

    Google Scholar 

  • Castellani, L. &Cohen, C. (1987) Myosin rod phosphorylation and the catch state of molluscan muscles.Science 235, 335–7.

    Google Scholar 

  • Cooley, L. B., Johnson, W. H. &Krause, S. (1979) Phosphorylation of paramyosin and its possible role in the catch mechanism.J. biol. Chem. 256, 3178–81.

    Google Scholar 

  • Cornelius, F. (1982) Tonic contraction and the control of relaxation in a chemically skinned molluscan smooth muscle.J. Gen. Physiol. 79, 821–34.

    PubMed  Google Scholar 

  • Ellington, W. R. (1983) The extent of intracellular acidification during anoxia in the catch muscle of two bivalve molluscs.J. Exp. Zool. 227, 313–7.

    Google Scholar 

  • Gies, A. (1988) Changes of metabolite contents and of energy charge induced by contraction, catch and relaxation in smooth molluscan muscle fibres. An analysis using reversed-phase ion-pair high-performance liquid chromatography.Comp. Biochem. Physiol. 91B, 483–7.

    Google Scholar 

  • Goldman, Y. E. (1987) Kinetics of the actomyosin ATPase in muscle fibers.Ann. Rev. Physiol. 49, 637–54.

    Google Scholar 

  • Ishii, N. (1987) Mechanical properties of saponin-treated smooth muscle cells isolated from a molluscan smooth muscle.J. Musc. Res. Cell Motil. 8, 281.

    Google Scholar 

  • Ishii, N., Mitsumori, F., Takahashi, K., Simpson, A. W. M. &Ashley, C. C. (1989a) Intracellular metabolite and free calcium concentrations during the ‘catch’ contraction and relaxation in a molluscan smooth muscle. InMuscle Energetics (edited byPaul, R. J., Elzinga, G. &Yamada, K.) pp. 463–4. New York: Alan R. Liss.

    Google Scholar 

  • Ishii, N., Simpson, A. W. M. &Ashley, C. C. (1989b) Free calcium at rest during “catch” in single smooth muscle cells.Science 243, 1367–8.

    PubMed  Google Scholar 

  • Ishii, N., Simpson, A. W. M. &Ashley, C. C. (1989c) Effects of 5-hydroxytryptamine (serotonin) and forskolin on intracellular free calcium in isolated and fura-2 loaded smooth-muscle cells from the anterior byssus retractor (catch) muscle ofMytilus edulis.Pflügers Arch. 414, 162–70.

    Google Scholar 

  • Jewell, B. R. (1959) The nature of the phasic and tonic responses of the anterior byssal retractor muscle ofMytilus.J. Physiol. (Lond.) 149, 154–77.

    Google Scholar 

  • Lowy, J. B. M. &Millman, B. M. (1963) The contractile mechanism of the anterior byssus retractor muscle (ABRM) ofMytilus edulis.Phil. Trans. R. Soc. (Lond.) B246, 105–48.

    Google Scholar 

  • Marchand-Dumont, G. &Baguet, F. (1975). The control mechanism of relaxation in molluscan catch muscle (ABRM).Pflügers Arch. 354, 87–100.

    Google Scholar 

  • Nauss, K. &Davies, R. E. (1966) Changes in inorganic phosphate and arginine during the development, maintenance and loss of tension in the anterior byssus retractor muscle ofMytilus edulis.Biochem. Z. 345, 173–87.

    Google Scholar 

  • Pfitzer, G. &Rüegg, J. C. (1982) Molluscan catch muscle: Regulation and mechanics in living and skinned anterior byssus retractor muscle ofMytilus edulis.J. Comp. Physiol. 147, 137–42.

    Google Scholar 

  • Rüegg, J. C. (1971) Smooth muscle tone.Physiol. Rev. 51, 201–48.

    PubMed  Google Scholar 

  • Rüegg, J. C. (1986)Calcium in Muscle Activation. Berlin: Springer.

    Google Scholar 

  • Schanck, A., Verbaert, B., Van Meersch, M., Baguet, F. &Devroede J. (1986)31P-nuclear-magnetic resonance study of muscles fromMytilus edulis.Eur. J. Biochem. 156, 625–9.

    PubMed  Google Scholar 

  • Sohma, H., Yazawa, M. &Morita, F. (1985) Phosphorylation of regulatory light chain a (RLC-a) in smooth muscle myosin of scallop,Papinopecten yessoensis.J. Biochem. (Tokyo) 98, 569–72.

    Google Scholar 

  • Sohma, H., Inoue, K. &Morita, F. (1988) A cAMP-dependent regulatory protein for RLC-a myosin kinase catalyzing the phosphorylation of scallop smooth muscle myosin light chain.J. Biochem. (Tokyo) 103, 431–5.

    Google Scholar 

  • Trentham, D. R., Eccleston, J. F. &Bagshaw, C. R. (1976) Kinetic analysis of ATPase mechanisms.Quart. Rev. Biophys. 9, 217–81.

    Google Scholar 

  • Twarog, B. M. (1976) Aspects of smooth muscle function in molluscan catch muscle.Physiol. Rev. 56, 829–38.

    PubMed  Google Scholar 

  • Winton, F. R. (1937) The changes in viscosity of an unstriated muscle (Mytilus edulis) during and after stimulation with alternating, interrupted and uninterrupted direct currents.J. Physiol. (Lond.) 88, 492–511.

    Google Scholar 

  • Zange, J., Grieshaber, M. K. &Jans, A. W. (1990a) The regulation of intracellular pH estimated by31P-NMR spectroscopy in the anterior byssus retractor muscle ofMytilus edulis L.J. Exp. Biol. 150, 95–109.

    Google Scholar 

  • Zange, J., Pörtner, H. O., Jans, A. W. H. &Grieshaber, M. K. (1990b) The intracellular pH of a molluscan smooth muscle during a contraction-catch-relaxation cycle estimated by the distribution of [14C]DMO and by31P-NMR spectroscopy.J. Exp. Biol. 150, 81–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishii, N., Mitsumori, F. & Takahashi, K. Changes in sarcoplasmic metabolite concentrations and pH associated with the catch contraction and relaxation of the anterior byssus retractor muscle ofMytilus edulis measured by phosphorus-31 nuclear magnetic resonance. J Muscle Res Cell Motil 12, 242–246 (1991). https://doi.org/10.1007/BF01745113

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01745113

Keywords

Navigation