Skip to main content

Exercise-Induced Regulation of the Na, K-Pump in Skeletal Muscles

  • Chapter
  • First Online:
Regulation of Membrane Na+-K+ ATPase

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 15))

  • 1106 Accesses

Abstract

Ion gradients across the skeletal muscle membrane undergo pronounced changes during intense muscle contractions. These changes influence excitability and muscle performance. The ion changes are counteracted by the activity of the Na, K-pump. Regulation of the Na, K-pump in association with muscle activity is therefore important for muscle function. This short review focuses on exercise-induced acute changes in Na, K-pump activity in skeletal muscles. The Na, K-pump is dependent on the intracellular Na+ concentration, which is influenced by muscle activity. Exercise changes the number of functional pumps in the outer membrane (translocation). In addition, the Na, K-pump activity is influenced by hormones, purines, nitric oxide and exercise-induced oxidative stress, which increases subunit S-glutathionylation. Some of these regulatory changes are mediated by changes in the interaction between the Na, K-pump α and β subunits and the regulatory protein phospholemman (FXYD1). Thus, exercise-induced acute regulation of the Na, K-pump in skeletal muscles is a multifactorial process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Juel C (2008) Regulation of pH in human skeletal muscle: adaptations to physical activity. Acta Physiol 193:17–24

    Article  CAS  Google Scholar 

  2. Fraser SF, McKenna MJ (1998) Measurement of Na+, K+-ATPase activity in human skeletal muscle. Anal Biol 258:63–67

    Article  CAS  Google Scholar 

  3. Kristensen M, Juel C (2010) Na+, K+-ATPase Na+ affinity in rat skeletal muscle fiber types. J Memb Biol 234:35–45

    Article  CAS  Google Scholar 

  4. Sandiford SD, Green HJ, Duhamel TA et al (2004) Inactivation of human muscle Na+-K+-ATPase in vitro during prolonged exercise is increased with hypoxia. J Appl Physiol 96:1767–1775

    Article  CAS  PubMed  Google Scholar 

  5. McKenna MJ, Bangsbo J, Renaud JM (2008) Muscle K+, Na+ and Cl- disturbances and Na+-K+ pump inactivation: implications for fatigue. J Appl Physiol 104:288–295

    Article  CAS  PubMed  Google Scholar 

  6. Juel C (2009) Na+-K+-ATPase in rat skeletal muscle: muscle fiber-specific differences in exercise-induced changes in ion affinity and maximal activity. Am J Physiol Regul Integr Comp Physiol 296:R125–R132

    Article  CAS  PubMed  Google Scholar 

  7. Juel C, Nordsborg NB, Bangsbo J (2013) Exercise-induced increase in maximal in vitro Na-K-ATPase activity in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 304:R1161–R1165

    Article  CAS  PubMed  Google Scholar 

  8. Hostrup M, Kalsen A, Ørtenblad N et al (2014) β2-adrenergic stimulation enhances Ca2+ release and contractile properties of skeletal muscle, and counteracts exercise-induced reductions in Na+-K+-ATPase Vmax in trained men. J Physiol 592:5445–5459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Everts ME, Clausen T (1994) Excitation-induced activation of the Na+-K+ pump in rat skeletal muscle. Am J Physiol 266:C925–C934

    CAS  PubMed  Google Scholar 

  10. Street D, Nielsen JJ, Bangsbo J, Juel C (2005) Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulation in human skeletal muscle interstitium. J Physiol 566:481–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clausen T, Flatman JA (1977) The effect of catecholamines on Na+-K+ transport and membrane potential in rat soleus muscle. J Physiol 270:383–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hundal HS, Marette A, Mitsumoto Y et al (1992) Insulin induces translocation of the α2 and β1 subunit of the Na+/K+-ATPase from intracellular compartments to the plasma membrane in mammalian skeletal muscle. J Biol Chem 267:5040–5043

    CAS  PubMed  Google Scholar 

  13. Lavoie L, Roy D, Ramlal T et al (1996) Insulin-induced translocation of the Na+-K+-ATPase subunits to the plasma membrane is muscle fiber type specific. Am J Physiol Cell Physiol 270:C1421–C1429

    CAS  Google Scholar 

  14. Marette A, Krischer J, Lavoie L et al (1993) Insulin increases the Na+-K+-ATPase alfa 2-subunit in the surface of rat skeletal muscle: morphological evidence. Am J Physiol 265:C1716–C1722

    CAS  PubMed  Google Scholar 

  15. Tsakiridis T, Wong P, Liu Z et al (1996) Exercise increases the plasma membrane content of the Na+-K+ pump and its mRNA in rat skeletal muscles. J Appl Physiol 80:699–705

    CAS  PubMed  Google Scholar 

  16. Juel C, Nielsen JJ, Bangsbo J (2000) Exercise induced translocation of Na+-K+ pump subunits to the plasma membrane in human skeletal muscle. Am J Physiol Reg Int Comp Physiol 278:R1107–R1110

    CAS  Google Scholar 

  17. McKenna MJ, Gissel H, Clausen T (2003) Effects of electrical stimulation and insulin on Na+-K+ ATPase ([3H]ouabain binding) in rat skeletal muscle. J Physiol 547:567–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kristensen M, Rasmussen MK, Juel C (2008) Na+-K+ pump location and translocation during muscle contraction in rat skeletal muscle. Pflugers Arch 456:979–989

    Article  CAS  PubMed  Google Scholar 

  19. Juel C, Grunnet L, Holse M et al (2001) Reversibility of exercise- induced translocation of Na+-K+ pump subunits to the plasma membrane in rat skeletal muscle. Pflugers Arch 443:212–217

    Article  CAS  PubMed  Google Scholar 

  20. Benziane B, Björnholm M, Pirkmajer S et al (2012) Activation of AMP-activated protein kinase stimulates Na+, K + -ATPase activity in skeletal muscle cells. J Biol Chem 287:23451–23463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Broch-Lips M, Pedersen TH, Nielsen OB (2010) Effect of purinergic receptor activation on Na+-K+ pump activity, excitability, and function in depolarized skeletal muscle. Am J Physiol Cell Physiol 298:C1438–C1444

    Article  CAS  PubMed  Google Scholar 

  22. Walas H, Juel C (2012) Purinergic activation of rat skeletal muscle membranes increases Vmax and Na+ affinity of the Na, K-ATPase and phosphorylates phospholemman and α1 subunits. Pflugers Arch 463:319–326

    Article  CAS  PubMed  Google Scholar 

  23. Juel C, Nordsborg NB, Bangsbo J (2014) Purinergic effects on Na, K-ATPase activity differ in rat and human skeletal muscle. PLoS One 9:e91175

    Article  PubMed  PubMed Central  Google Scholar 

  24. Reid MB (2001) Plasticity in skeletal muscle, cardiac, and smooth muscle: invite review: redox modulation of skeletal muscle contraction: what we know and what we don’t. J Appl Physiol 90:724–731

    Article  CAS  PubMed  Google Scholar 

  25. Bailey DM, Davies B, Young IS et al (2003) EPR spectroscopic detection of free radical outflow from an isolated muscle bed in exercising humans. J Appl Physiol 94:1714–1718

    Article  CAS  PubMed  Google Scholar 

  26. Mollica JP, Dutka TL, Merry TL et al (2012) S-Glutathionylation of troponin I (fast) increases contractile apparatus Ca2+ sensitivity of fast-twitch muscle fibres of rat and humans. J Physiol 590:1443–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shattock MJ, Matsuura M (1993) Measurement of Na(+)-K+ pump current in isolated rabbit ventricular myocytes using the whole-cell voltage-clamp technique. Inhibition of the pump by oxidative stress. Circ Res 72:91–101

    Article  CAS  PubMed  Google Scholar 

  28. Figtree G, Liu C-C, Bibert S et al (2009) Reversible oxidative modifications: a key mechanism of Na+-K+ pump regulation. Circ Res 105:185–193

    Article  CAS  PubMed  Google Scholar 

  29. Liu CC, Fry NAS, Hamilton EJ et al (2013) Redox-dependent regulation of the Na+-K+ pump: new twists to an old target for treatment of heart failure. J Moll Cell Cardiol 61:94–101

    Article  CAS  Google Scholar 

  30. Liu CC, Garcia A, Mahmmoud YA et al (2012) Susceptibility of β1 Na+-K+ pump subunit to glutathionylation and oxidative inhibition depends on conformational state of the pump. J Biol Chem 287:12353–12364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Petrushanko IY, Yakushev S, Mitkevich VA, Kamanina YV, Ziganshin RH et al (2012) S-Glutathionylation of the Na, K-ATPase catalytic α subunit is a determinant of the enzyme redox sensitivity. J Biol Chem 287:32195–32205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xianya M, Petrushanko IY, Klimanova EA et al (2014) Glutathionylation of the alpha-subunit of Na, K-ATPase from rat heart by oxidized glutathione inhibits the enzyme. Biochemistry (Mosc) 79:158–164

    Article  Google Scholar 

  33. Bibert S, Liu CC, Figtree GA, Garcia A, Hamilton EJ et al (2011) FXYD proteins reverse inhibition of the Na+-K+ pump mediated by glutathionylation of its β1 subunit. J Biol Chem 286:18562–18572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Juel C (2014) Oxidative stress (glutathionylation) and Na, K-ATPase activity in rat skeletal muscle. PLoS One 9(10):e110514

    Article  PubMed  PubMed Central  Google Scholar 

  35. William M, Vien J, Hamilton E et al (2005) The nitric acid donor sodium nitroprusside stimulates the Na+-K+ pump in isolated rabbit cardiac myocytes. J Physiol 565:815–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pavlovic D, Hall AR, Kennington EJ et al (2013) Nitric oxide regulates cardiac intracellular Na+ and Ca2+ by modulating Na/K ATPase via PKCε and phospholemman-dependent mechanisms. J Mol Cell Cardiol 61:164–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fuller W, Tulloch LB, Shattock MJ et al (2013) Regulation of the cardiac sodium pump. Cell Mol Life Sci 70:1357–1380

    Article  CAS  PubMed  Google Scholar 

  38. Yakushev S, Band M, van Patot MT et al (2012) Cross-talk between S-nitrosylation and S-glutathionylation in control of the Na, K-ATPase regulation in hypoxic heart. Am J Physiol Heart Circ Physiol 303:H332–H343

    Article  Google Scholar 

  39. Crambert G, Füzesi M, Garty H et al (2002) Phospholemman (FXYD1) associates with Na, K-ATPase and regulates its transport properties. Proc Natl Acad Sci U S A 99:11479–11481

    Article  Google Scholar 

  40. Rasmussen MK, Kristensen M, Juel C (2008) Exercise-induced regulation of phospholemman (FXYD1) in rat skeletal muscle: implications for Na+/K+-ATPase activity. Acta Physiol 194:67–79

    Article  CAS  Google Scholar 

  41. Benziane B, Widegren U, Pirkmajer S, Henriksson J, Stepo NK, Chibalin AV (2011) Effect of exercise and training on phospholemman phosphorylation in human skeletal muscle. Am J Physiol Endocrinol Metab 301:E456–E466

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Juel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Juel, C. (2016). Exercise-Induced Regulation of the Na, K-Pump in Skeletal Muscles. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Membrane Na+-K+ ATPase. Advances in Biochemistry in Health and Disease, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-24750-2_21

Download citation

Publish with us

Policies and ethics