Skip to main content
Log in

Amino acid sequences of myosin essential and regulatory light chains from two clam species: Comparison with other molluscan myosin light chains

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

We have determined the amino acid sequences of the essential light chains (ELC) and regulatory light chains (RLC) of myosin from two species of clam,Mercenaria mercenaria andMacrocallista nimbosa, using protein chemistry methods. The N-termini of all four proteins were blocked, and sequencing was carried out on various chemically and enzymatically produced peptide fragments. Cleavage of eitherMercenaria RLC (MRLC) orMacrocallista RLC (VLC) at its 3 Arg yielded four peptides, three of which could not be sequenced directly, due to an N-terminal blocking group and 2 Arg-Gln bonds in these proteins. The fourth peptide was partially and specifically cleaved at an unusually reactive residue, Met-64, which is invariant in all known RLC sequences. A comparison of all available molluscan ELC and RLC sequences was carried out in search of clues to functionally important features of these proteins in muscles which are regulated by a Ca2+-sensitive myosin. By analogy with other RLCs, VRLC and MRLC may be phosphorylated at Ser-11 by an endogenous kinase. All myosin light chains, like troponin C and calmodulin, contain four homologous regions, I to IV, each of which contains a twelve-residue potential Ca2+-binding loop flanked on either side by a pair of helices. All RLCs, including those from Ca2+-insensitive myosins, contain a divalent cation-binding site in region I. Clam and other molluscan ELCs contain a single Ca2+-binding site in region III. This site is present only in the ELCs of myosins that are regulated by direct binding of Ca2+. The ELC site III is likely to play a key role in the regulation of molluscan muscle contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashiba, G. &Szent-Györgyi, A. G. (1985) Essential light chain exchange in scallop myosin.Biochem. 24, 6618–23.

    Google Scholar 

  • Baba, M. L., Goodman, M., Berger-Cohn, J., Demaille, J. G. &Matsuda, G. (1984) The early adaptive evolution of calmodulin.Mol. Biol. Evol. 1, 442–55.

    PubMed  Google Scholar 

  • Bagshaw, C. R. &Kendrick-Jones, J. (1979) Characterization of homologous divalent metal ion binding sites of vertebrate and molluscan myosins using electron paramagnetic resonance spectroscopy.J. Mol. Biol. 130, 317–36.

    PubMed  Google Scholar 

  • Barouch, W. W. (1990) Carboxypeptidase P cleaves Lys-Lys.Peptide Research 3, 73–4.

    PubMed  Google Scholar 

  • Bechet, J.-J. &Houadjeto, M. (1989) Prediction of the secondary structure of myosin light chains from comparison of homologous sequences. Implications for the interaction between myosin heavy and light chains.Biochim. Biophys. Acta 996, 199–208.

    PubMed  Google Scholar 

  • Boguta, G., Stepkowski, D. &Bierzynski, A. (1988a) Theoretical estimation of the calcium-binding constants for proteins from the troponin C superfamily based on a secondary structure prediction method. I. Estimation procedure.J. Theor. Biol. 135, 41–61.

    PubMed  Google Scholar 

  • Boguta, G., Stepkowski, D. &Bierzynski, A. (1988b) Theoretical estimation of the calcium-binding constants for proteins from the troponin C superfamily based on a secondary structure prediction method. II. Applications.J. Theor. Biol. 135, 63–73.

    PubMed  Google Scholar 

  • Chantler, P. D. &Szent-Györgyi, A. G. (1980) Regulatory light-chains and scallop myosin: full dissociation, reversibility and co-operative effects.J. Mol. Biol. 138, 473–92.

    PubMed  Google Scholar 

  • Chantler, P. D. &Tao, T. (1986) Interhead fluorescence energy transfer between probes attached to translationally equivalent sites on the regulatory light chains of scallop myosin.J. Mol. Biol. 192, 87–99.

    PubMed  Google Scholar 

  • Chantler, P. D. &Bower, S. M. (1988) Cross-linking between translationally equivalent sites on the two heads of myosin.J. Biol. Chem. 263, 938–44.

    PubMed  Google Scholar 

  • Collins, J. H. (1974) Homology of myosin light chains, troponin C and parvalbumins deduced from comparison of their amino acid sequences.Biochem. Biophys. Res. Commun. 58, 301–8.

    PubMed  Google Scholar 

  • Collins, J. H. (1976a) Homology of myosin DTNB light chain with alkali light chains, troponin C and parvalbumin.Nature 259, 699–700.

    PubMed  Google Scholar 

  • Collins, J. H. (1976b) Structure and evolution of troponin C and related proteins.Soc. Exp. Biol. Symp. 30, 303–334.

    Google Scholar 

  • Collins, J. H. (1991) Myosin light chains and troponin C: structural and evolutionary relationships revealed by amino acid sequence comparisons.J. Muscle Res. & Cell Motil.,12, 3–25.

    Google Scholar 

  • Collins, J. H., Potter, J. D., Horn, M. J., Wilshire, G. &Jackman, N. (1973) The amino acid sequence of rabbit skeletal muscle troponin C: gene replication and homology with calcium-binding proteins from carp and hake muscle.FEBS Lett 36, 268–72.

    PubMed  Google Scholar 

  • Collins, J. H., Jakes, R., Kendrick-Jones, J., Leszyk, J., Barouch, W., Theibert, J. L., Spiegel, J. &Szent-Györgyi, A. G. (1986) Amino acid sequence of myosin essential light chain from the scallopAquipeden irradians.Biochem. 25, 7651–6.

    Google Scholar 

  • Collins, J. H., Cox, J. A. &Theibert, J. L. (1988) Amino acid sequence of a sarcoplasmic calcium binding protein from the sandwormNereis diversicolor. J. Biol. Chem.263, 15378–85.

    PubMed  Google Scholar 

  • Fontana, A. (1972) Modification of tryptophan with BNPS-Skatole.Methods Enzymol. 25, 419–23.

    Google Scholar 

  • Garnier, J., Osguthorpe, D. J. &Robson, B. (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins.J. Mol. Biol. 120, 97–120.

    PubMed  Google Scholar 

  • Goodwin, E. B., Szent-Györgyi, A. G. &Leinwand, L. (1987) Cloning and characterization of the scallop essential and regulatory myosin light chain cDNAs.J. Biol. Chem. 262, 11052–6.

    PubMed  Google Scholar 

  • Goodwin, E. B., Leinwand, L. A. &Szent-Györgyi, A. G. (1990) Regulation of scallop myosin by mutant regulatory light chains.J. Mol. Biol.,216, 85–93.

    PubMed  Google Scholar 

  • Gurd, F. R. N. (1967) Carboxymethylation of proteins.Methods Enzymol. 11, 532–41.

    Google Scholar 

  • Hardwicke, P. M. D., Walliman, T. &Szent-Györgyi, A. G. (1982) Regulatory and essential light-chain interactions in scallop myosin. I. Protection of essential light chain thiol groups by regulatory light-chains.J. Mol. Biol. 156, 141–52.

    PubMed  Google Scholar 

  • Hardwicke, P. M. D., Walliman, T. &Szent-Györgyi, A. G. (1983) Light-chain movement and regulation in scallop myosin.Nature 249, 478–82.

    Google Scholar 

  • Hardwicke, P. M. D. &Szent-Györgyi, A. G. (1985) Proximity of regulatory light chains in scallop myosin.J. Mol. Biol. 183, 203–11.

    PubMed  Google Scholar 

  • Heinrikson, R. L. &Meredith, S. C. (1984) Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocynate.Anal. Biochem. 136, 65–74.

    PubMed  Google Scholar 

  • Herzberg, O. &James, M. N. G. (1985) Common structural frame-work of the two Ca/Mg binding loops of troponin C and other Ca binding proteins.Biochemistry 24, 5298–302.

    PubMed  Google Scholar 

  • Hirs, C. H. W. (1967) Reduction and S-carboxymethylation of proteins.Methods Enzymol. 11, 199–203.

    Google Scholar 

  • Kendrick-Jones, J. &Scholey, J. M. (1981) Myosin-linked regulatory systems.J. Muscle Res. & Cell Motil. 2, 347–72.

    Google Scholar 

  • Kendrick-Jones, J., Lehman, W. &Szent-Györgyi, A. G. (1970) Regulation in molluscan muscles.J. Mol. Biol. 54, 313–26.

    PubMed  Google Scholar 

  • Kendrick-Jones, J. &Jakes, R. (1977) Myosin-linked regulation: a chemical approach. InMyocardial Failure: International Boehringer Symposium, Munich, (edited byIcker, G., Weber, A. &Goodwin, J.) Pp. 28–40. Berlin: Springer-Verlag.

    Google Scholar 

  • Kendrick-Jones, J., Szentkiralyi, E. M. &Szent-Györgyi, A. G. (1976) Regulatory light chains in myosins.J. Mol. Biol. 104, 747–75.

    PubMed  Google Scholar 

  • Kwon, H., Goodwin, E. B., Nyitray, L., Berliner, E., O'Neall-Hennessey, E., Melandri, F. D. &Szent-Györgyi, A. G. (1990) Isolation of the regulatory domain of scallop myosin: role of the essential light chain in calcium binding.Proc. Natl Acad. Sci. USA,87, 4771–5.

    PubMed  Google Scholar 

  • Landon, M. (1977) Cleavage at aspartyl-propyl bonds.Methods Enzymol. 47, 145–9.

    PubMed  Google Scholar 

  • Leszyk, J., Dumaswala, R., Potter, J. D., Gusev, N. B., Verin, A. D., Tobacman, L. S. &Collins, J. H. (1987) Bovine cardiac troponin T: amino acid sequences of the two isoforms.Biochem. 26, 7035–42.

    Google Scholar 

  • Leszyk, J., Dumaswala, R., Potter, J. D. &Collins, J. H. (1988) Amino acid sequence of troponin I from bovine cardiac muscle.Biochem. 27, 2821–27.

    Google Scholar 

  • Maita, T., Konno, K., Ojima, T. &Matsuda, G. (1984) Amino acid sequences of the regulatory light chains of striated adductor muscle myosins from Ezo giant scallop and Akazara scallop.J. Biochem. 95, 167–77.

    PubMed  Google Scholar 

  • Maita, T., Konno, K., Maruta, S., Norisue, H. &Matsuda, G. (1987a) Amino acid sequence of the essential light chain of adductor muscle myosin from Ezo giant scallop,Patinopecten yessoensis.J. Biochem. 102, 1141–49.

    PubMed  Google Scholar 

  • Maita, T., Tanaka, H., Konno, K. &Matsuda, G. (1987b) Amino acid sequence of the regulatory light chain of squid mantle muscle myosin.J. Biochem. 102, 1151–7.

    PubMed  Google Scholar 

  • Matsuda, G. (1983) The light chains of muscle myosin: its structure, function and evolution.Adv. Biophys. 16, 185–218.

    PubMed  Google Scholar 

  • Miyanishi, T., Maita, T., Morita, F., Kondo, S. &Matsuda, G. (1985) Amino acid sequences of the two kinds of regulatory light chains of adductor smooth muscle myosin fromPatinopecten yessoensis.J. Biochem. 97, 541–51.

    PubMed  Google Scholar 

  • Okamoto, Y., Sekine, T., Grammer, J. &Yount, R. G. (1986) The essential light chains constitute part of the active site of smooth muscle myosin.Nature 324, 78–80.

    PubMed  Google Scholar 

  • Reinach, F. C., Nagai, K. &Kendrick-Jones, J. (1986) Site-directed mutagenesis of the regulatory light-chain Ca/Mg binding site and its role in hybrid myosins.Nature 322, 80–3.

    PubMed  Google Scholar 

  • Saimi, Y., Martinac, B., Gustin, M. C., Culbertson, M. R., Adler, J. &Kung, C. (1988) Ion channels inParamecium, yeast andEscherichia coli.Trends Biochem. Sci. 13, 304–9.

    PubMed  Google Scholar 

  • Sellers, J. R., Chantler, P. D. &Szent-Györgyi, A. G. (1980) Hybrid formation between scallop myofibrils and foreign regulatory light chains.J. Mol. Biol. 144, 223–45.

    PubMed  Google Scholar 

  • Simmons, R. M. &Szent-Györgyi, A. G. (1978) Control of tension development in scallop muscle fibres with foreign regulatory light chains.Nature 273, 62–4.

    PubMed  Google Scholar 

  • Simmons, R. M. &Szent-Györgyi, A. G. (1985) A mechanical study of regulation in the striated adductor muscle of the scallop.J. Physiol. 358, 47–64.

    PubMed  Google Scholar 

  • Smith, V. L., Doyle, K. E., Maune, J. F., Munjaal, R. P. &Beckingham, K. (1987) Structure and sequence of theDrosophila melanogaster calmodulin gene.J. Mol. Biol. 196, 471–85.

    PubMed  Google Scholar 

  • Sohma, H., Yazawa, M. &Morita, F. (1985) Phosphorylation of regulatory light chain-a (RLC-a) in smooth muscle myosin of scallopPatinopecten yessoensis.J. Biochem. 98, 569–72.

    PubMed  Google Scholar 

  • Sohma, H. &Morita, F. (1986) Purification of a protein kinase phosphorylating myosin regulatory light chain-a (RLC-a) from smooth muscle of scallopPatinopecten yessoensis.J. Biochem. 100, 1155–63.

    PubMed  Google Scholar 

  • Stafford, W. F., Szentkiralyi, E. M. &Szent-Györgyi, A. G. (1979) Regulatory properties of single-headed fragments of scallop myosin.Biochem. 18, 5273–80.

    Google Scholar 

  • Szentkiralyi, E. M. (1984) Tryptic digestion of scallop S1: evidence for a complex between the two light-chains and a heavy-chain peptide.J. Muscle Res. Cell Motil. 5, 147–64.

    PubMed  Google Scholar 

  • Szent-Györgyi, A. G., Szentkiralyi, E. M. &Kendrick-Jones, J. (1973) The light chains of scallop myosin as regulatory subunits.J. Mol. Biol. 74, 179–203.

    PubMed  Google Scholar 

  • Takahashi, M., Sohma, H. &Morita, F. (1988) The steady state intermediate of scallop smooth muscle myosin ATPase and effect of light chain phosphorylation. A molecular mechanism for catch contraction.J. Biochem. 104, 102–7.

    PubMed  Google Scholar 

  • Tanaka, H., Maita, T., Ojima, T., Nishita, K. &Matsuda, G. (1988) Amino acid sequence of the regulatory light chain of clam foot muscle myosin.J. Biochem. 103, 572–80.

    PubMed  Google Scholar 

  • Trayer, I. P., Trayer, H. R. &Levine, B. A. (1987) Evidence that the N-terminal region of Al-light chain of myosin interacts directly with the C-terminal region of actin.Eur. J. Biochem. 164, 259–66.

    PubMed  Google Scholar 

  • Walliman, T. &Szent-Györgyi, A. G. (1981) An immunological approach to myosin light-chain function in thick filament linked regulation. 2. Effects of anti-scallop myosin light-chain antibodies. Possible regulatory role for the essential light chain.Biochem. 20, 1188–97.

    Google Scholar 

  • Walliman, T., Hardwicke, P. M. D. &Szent-Györgyi, A. G. (1982) Regulatory and essential light-chain interactions in scallop myosin. II. Photochemical cross-linking of regulatory and essential light-chains by heterobifunctional reagents.J. Mol. Biol. 156, 153–73.

    PubMed  Google Scholar 

  • Watanabe, B., Maita, T., Konno, K. &Matsuda, G. (1986) Amino acid sequence of LC-1 light chain of squid mantle muscle myosin.Biol. Chem. Hoppe-Seyler 367, 1025–32.

    PubMed  Google Scholar 

  • Wells, C. &Bagshaw, C. R. (1985) Calcium regulation of molluscan myosin ATPase in the absence of actin.Nature 313, 696–7.

    PubMed  Google Scholar 

  • Winkelman, D. A., Almeda, S., Vibert, P. &Cohen, C. (1984) A new myosin fragment: visualization of the regulatory domain.Nature 307, 758–60.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barouch, W.W., Breese, K.E., Davidoff, S.A. et al. Amino acid sequences of myosin essential and regulatory light chains from two clam species: Comparison with other molluscan myosin light chains. J Muscle Res Cell Motil 12, 321–332 (1991). https://doi.org/10.1007/BF01738587

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01738587

Keywords

Navigation