Skip to main content
Log in

Cellular heterogeneity of the distal nephron and its relation to function

Zelluläre Heterogenität des distalen Nephrons und ihre Beziehung zur Funktion

  • Zum Geleit
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

The distal segments beyond the macula densa — distal convoluted tubule, connecting tubule, cortical collecting duct — display cellular heterogeneity. The four different cell types, namely the DCT cell, CNT cell, the principal cell and intercalated cell differ mainly by the pattern of membrane amplification and they reveal also qualitative differences as to some cytoplasmic proteins.

Each of the four cell types adapts to chronic changes in electrolyte metabolism with structural alteration, concerning essentially the membrane area over which the active transport step of the cell proceeds, in DCT-, CNT- and P-cells the basolateral cell membrane with the Na-K-ATPase, in intercalated cells the luminal cell membrane with a H+ ATPase. Since each cell type responds only to specific conditions with changes in membrane area and associated transcellular transport activity, morphological studies can help to determine the specific role of each cell type in the regulation of renal electrolyte excretion. Such investigations demonstrated that besides mineralocorticoid hormones the transport capacity of certain cells should depend on the solute composition of tubular fluid. Thus, changes in the transport pattern specifically induced in only one segment alters also the transport patterns of segments downstream. Cellular heterogeneity seems to guarantee the optimal regulation of renal electrolyte excretion.

Zusammenfassung

Die distalen Tubuli in der Nierenrinde gliedern sich nach der Macula densa in drei morphologisch verschieden gebaute Abschnitte: in die pars convoluta des distalen Tubulus (DCT), den Verbindungstubulus (CNT) und das corticale Sammelrohr (CCD). In den drei Segmenten sind insgesamt vier Zelltypen vorhanden: die DCT-Zelle, die CNT-Zelle, die Haupt-Zelle (P-Zelle) und die Schaltzelle (I-Zelle), die sich unter anderem an Hand der Ausbildung ihrer Zellmembranfläche unterscheiden lassen. In der DCT-, CNT- und P-Zelle ist in verschiedenem Ausmaß jeweils die basolaterale Membranfläche vergrößert, in der die Na-K-ATPase lokalisiert ist. In der I-Zelle ist die luminale Zellmembran vergrößert, in der wahrscheinlich eine H+-ATPase vorhanden ist.

Bei längerdauernden Änderungen im Elektrolythaushalt treten in den Zellen strukturelle Anpassungserscheinungen auf, die vor allem das Ausmaß der aktiv transportierenden Membranflächen betreffen (basolaterale Membranflächen in DCT-, CNT- und P-Zellen; luminale Membran in I-Zellen). Die Veränderungen der basolateralen Membranfläche verhalten sich proportional zu den Änderungen der Na-K-ATPase-Aktivität und zeigen daher eine entsprechende Änderung der transzellulären Transportkapazität an.

Morphologische Untersuchungen haben gezeigt, daß jeder Zelltyp nur auf für ihn spezifische Veränderungen im Elektrolythaushalt reagiert und erlauben daher gewisse Rückschlüsse auf die spezifische Rolle der einzelnen Zelltypen bei der Regulierung des Elektrolytausscheidung. Aus dem Muster der strukturellen Veränderungen läßt sich ableiten, daß bei bestimmten Zelltypen außer Hormonen offenbar auch die Elektrolytzusammensetzung der Tubulusflüssigkeit den transzellulären Transport beeinflußt. Daher müssen Veränderungen des Elektrolyttransports, die in einem Abschnitt spezifisch induziert werden (z.B. durch Furosemid), sich auch in nachgeschalteten Abschnitten auf den transzellulären Transport auswirken. Die zelluläre Heterogenität der distalen Abschnitte scheint eine differenzierte Regulierung der Elektrolytausscheidung unter unterschiedlichsten Bedingungen zu garantieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown D, Kumpulainen T, Roth J, Orci L (1983) Immunohistochemical localization of carbonic anhydrase in postnatal and adult rat kidney. Am J Physiol 245 (Renal Fluid Electrolyte Physiol 14):110–118

    Google Scholar 

  2. Brown DJ, Roth J, Orci L (1985) Lectin-gold cytochemistry reveals intercalated cell heterogeneity along rat kidney collecting ducts. Am J Physiol 248 (Cell Physiol 17):348–356

    Google Scholar 

  3. Crayen M, Thoenes W (1975) Architektur und cytologische Charakterisierung des distalen Tubulus der Rattenniere. Fortschritte der Zoologie Band 23:279–288

    Google Scholar 

  4. Crayen ML, Thoenes W (1978) Architecture and cell structures in the distal nephron of the rat kidney. Europ J Cell Biol 17:197–211

    Google Scholar 

  5. Figueroa CD, Caorsi I, Subiabre J, Vio CP (1984) Immunoreactive Kallikrein Localization in the Rat Kidney: An Immuno-Electron-Microscopic Study. J Histochem and Cytochem 32(1):117–121

    Google Scholar 

  6. Garg L, Knepper M, Burg M (1981) Mineralocorticoid stimulation of Na-K-ATPase in nephron segments. Am J Physiol 240:(Renal Fluid Electrolyte Physiol 9):F536-F544

    Google Scholar 

  7. Gluck St, Cannon C, Al-Awqati Q (1982) Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane. Proc Natl Acad Sci USA 79:4327–4331

    Google Scholar 

  8. Jacobson HR (1981) Functional segmentation of the mammalian nephron. Am J Physiol 241 (Renal Fluid Electrolyte Physiol 10):F203-F218

    Google Scholar 

  9. Kaissling B (1980) Ultrastructural Organization of the Transition from the Distal Nephron to the Collecting Duct in the Desert Rodent Psammomys obesus. Cell Tissue Res 212:475–495

    Google Scholar 

  10. Kaissling B (1982) Structural aspects of adaptive changes in renal electrolyte excretion. Am J Physiol 243 (Renal Fluid Electrolyte Physiol 12):211–116

    Google Scholar 

  11. Kaissling B (1985) Structural adaptation to altered electrolyte metabolism by cortical distal segments. Fed Proceed (in press)

  12. Kaissling B, LeHir M (1985) Anpassung distaler Tubulus-segmente an Aenderungen im Elektrolythaushalt. Acta histochemica, Suppl XXXI:185–191

  13. Kaissling B, LeHir M (1982) Distal tubular segments of the rabbit kidney after adaptation to altered Na- and K-intake. Cell Tissue Res 224:469–492

    Google Scholar 

  14. Kaissling B, Kriz W (1979) Structural Analysis of the Rabbit Kidney. Adv Anat Embryol Cell Biol 56:1–123

    Google Scholar 

  15. Kriz W, Kaissling B, Psczolla M (1978) Morphological characterization of the cells in Henle's loop and the distal tubule. In: Vogel H, Ullrich KJ (eds) New Aspects of Renal Function. Excerpta Medica, Amsterdam

    Google Scholar 

  16. Kaissling B, Bachmann S, Kriz W (1985) Structural adaptation of the distal convoluted tubule to prolonged furosemide treatment. Am J Physiol 248 (Renal Fluid Electrolyte Physiol 17:F374-F381

    Google Scholar 

  17. LeHir M, Dubach UC (1982) The cellular specificity of lectin binding in the kidney. I. Histochemistry 74:521–530

    Google Scholar 

  18. LeHir M, Kaissling B, Dubach UC (1982a) Distal tubular segments of the rabbit kidney after adaptation to altered Na- and K-intake. Cell Tissue Res 224:493–504

    Google Scholar 

  19. LeHir M, Kaissling B, Koeppen BM, Wade JB (1982b) Binding of peanut lectin to specific epithelial cell types in kidney. Am J Physiol 242 (Cell Physiol 11):117–120

    Google Scholar 

  20. Marver D (1984) Evidence of corticosteroid action along the nephron. Am J Physiol 246 (Renal Fluid Electrolyte Physiol 15):111–123

    Google Scholar 

  21. Morel F, Chabardès D, Imbert M (1976) Functional segmentation of the rabbit distal tubule by microdetermination of hormone-dependent adenylate cyclase activity. Kidney Int 2:264–277

    Google Scholar 

  22. Morel F, Imbert-Teboul M, Chabardes D (1981) Distribution of hormone-dependent adenylate cyclase in the nephron and its physiological significance. Annu Rev Physiol 43:569–581

    Google Scholar 

  23. O'Neil RG, Hayhurst RA (1985) Functional differentiation of cell types of cortical collecting duct. Am J Physiol 248 (Renal Fluid Electrolyte Physiol 17):449–453

    Google Scholar 

  24. Omata K, Carretero OA, Scicli AG, Jackson BA (1982) Localization of active and inactive kallikrein (kininogenase activity) in the microdissected rabbit nephron. Kidney Int 22:602–607

    Google Scholar 

  25. Peter K (1909) Untersuchungen über Bau und Entwicklung der Niere. I. Fischer, Jena

    Google Scholar 

  26. Roth J, Brown D, Norman AW, Orci L (1982) Localization of the vitamin D-dependent calcium-binding protein in mammalian kidney. Am J Physiol 243 (Renal Fluid Electrolyte Physiol 12):243–252

    Google Scholar 

  27. Sakauye C, Feldman D (1976) Agonist and antimineralocorticoid activities of spirolactones. Am J Physiol 232(1):93–97

    Google Scholar 

  28. Stanton BA, Biemesderfer D, Wade JB, Giebisch G (1981) Structural and functional study of the rat distal nephron: Effects of potassium adaptation and depletion. Kidney Int 19:36–48

    Google Scholar 

  29. Stetson DL, Wade JB, Giebisch G (1980) Morphologic alterations in the rat medullary collecting duct following potassium depletion. Kidney Int 17:45–56

    Google Scholar 

  30. Tisher CC, Kaissling B (1984) Structural heterogeneity of the distal nephron. In: Robinson RR (ed) Nephrology I, Proceed IXth Int Congr Nephrol Workshops:243-250

  31. Wade JB, O'Neil RG, Pryor JL, Boulpaep E (1979) Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones. J Cell Biol 81:439–445

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaissling, B. Cellular heterogeneity of the distal nephron and its relation to function. Klin Wochenschr 63, 868–876 (1985). https://doi.org/10.1007/BF01738139

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01738139

Key words

Schlüsselwörter

Navigation