Skip to main content
Log in

Neue-Aspekte zur durchblutungssteigernden und insulinähnlichen Wirkung der Muskelarbeit: Mögliche Beteiligung des Kallikrein-Kinin-Prostaglandin Systems

New aspects of the blood flow-augmenting and insulin-like activity of muscle exercise: Possible involvement of the kallikrein-kinin-prostaglandin system

  • Übersichten
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

Adaptations of energy metabolism, as they occur during contractions of skeletal muscle besides by anaerobic glycolysis are achieved via changes in capillary blood flow providing substrates and oxygen for combustion. Since, initially, oxygen supply is restricted in the working muscle, glucose would seem to be the adequate fuel as it may be used anaerobically and yields more energy per mole of oxygen than fatty acids under such circumstances. Besides glucose, amino acids are also required for accelerated proteosynthesis according to the work load. Therefore, an enlargement of the capillary net has to be accompanied by an amplification of the action of insulin, which is often present in only small amounts, e.g., after an overnight fast. This aim is met in three ways: (1) enlargement of the capillary net with accelerated blood flow increasing the supply of insulin and the number of receptor sites for insulin binding; (2) accelerated transport of insulin through the capillary wall, providing more insulin in the interstitial space and at the plasma membranes; (3) a molecular mechanism directly involving the insulin-receptor-messenger complex, localized at the plasma membrane of the working muscle cell.

These mechanisms resemble a self-regulatory process, set in motion by the release of metabolites from the working tissue. From recent studies there is accumulating evidence that kinins liberated from their precursors are involved as tissue hormones by carrying the signal across the interstitial space to the smooth muscle cells of the capillary vessels. Concomitantly, prostaglandins are released intracellulary to bring about, in cooperation with kinins, the various adaptive mechanisms.

Amplifying systems of this kind may play a role not only in muscle but also in other tissues where adequate kinin or prostaglandin release would appear beneficial under several clinical conditions such as shock, coronary infarction, would healing, etc.

Zusammenfassung

Anpassungen des Energiestoffwechsels wie sie im kontrahierenden Skelettmuskel auftreten, werden im Anschluß an die Phase der anaeroben Glycolyse über Änderungen des kapillaren Blutflusses vorgenommen, der Substrate und Sauerstoff für die Energiegewinnung heranträgt. Da zu Beginn der Leistung die Sauerstoffversorgung limitiert ist, scheint Glucose das geeignete Substrat, da sie sowohl anaerob zur Energiegewinnung benützt werden kann als auch pro Molekül Sauerstoff mehr Energie als Fettsäuren liefert. Neben der Glucose werden auch Aminosäuren für eine beschleunigte Proteosynthese und Muskelhypertrophie benötigt. Aus diesem Grunde muß die Erweiterung des kapillaren Gefäßnetzes von einer Modulation der Wirkung von Insulin begleitet sein, das häufig z.B. nach einem Übernachtfasten nur in niedrigen Konzentrationen vorliegt. Dieses Ziel wird auf dreierlei Weise erreicht: 1. Durch Erweiterung des kapillaren Gefäßnetzes, was zu einer verbesserten Versorgung mit Insulin und zu einem größeren Angebot an Insulinrezeptoren führt, 2. durch einen beschleunigten Transport von Insulin durch die kapillaren Gefäßwände, so daß mehr Insulin im interstitiellen Raum und an den Plasmamembranen des Gewebes vorhanden ist. 3. durch einen Effekt auf molekularer Ebene am „Insulin-Rezeptor-Messenger“-Mechanismus. Diese Adaptationen sind Teile eines selbstregulatorischen Prozesses, der durch die Freisetzung von Metaboliten aus dem arbeitenden Muskel in Gang gesetzt wird. Aus neueren Studien gibt es zunehmend Hinweise, daß Kinine und Prostaglandine beteiligt sind. Die ersteren werden bei Bedarf aus ihrem Präkursorprotein Kininogen proteolytisch freigesetzt und tragen als Gewebshormone das Signal des arbeitenden Muskelgewebes über den interstitiellen Raum zur glatten Gefäßmuskelzelle der Kapillaren. Daraufhin werden Prostaglandine aus Plasmamembranlipiden freigesetzt, die als Zellmediatoren zusammen mit den Kininen die verschiedenen Adaptationsmechanismen hervorrufen.

Verstärkersysteme dieser Art dürfen nicht nur im Muskel, sondern auch in anderen Geweben eine Rolle spielen, in denen eine adäquate Kinin- und Prostaglandin-Freisetzung unter den verschiedensten klinischen Bedingungen, z.B. im Schock, beim Herzinfarkt, bei Wundheilung etc. für die adäquate Bereitstellung von Sauerstoff, energiereichen Substraten und Aminosäuren als Bausteinen sorgt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Alexander K, Teusen R, Mitzkay HJ (1967) Measurement of the integrated capillary pressure in reactive hyperaemic phase in diabetics and normal subjects. Bibl Anat 9:516–519

    Google Scholar 

  • Alexander RW, Kent KM, Pisano JJ, Keiser HR, Cooper T (1975) Regulation of postocclusive hyperemia by endogenously synthesized prostaglandins in the dog heart. J Clin Invest 55:1174–1181

    Google Scholar 

  • Allwood MI, Lewis GP (1963) Bradykinin in human blood during vasodilatation. J Physiol 166:47–49

    Google Scholar 

  • Bar RS, Peacock ML, Spanheimer RG, Veenstra R, Hoak IC (1980) Differential binding of insulin to human arterial and venous endothelial cells in primary culture. Diabetes 29:991–995

    Google Scholar 

  • Barcroft H (1963) Circulation in skeletal muscle. In: Handbook of Physiology, Sect 2, Circulation Vol II. Am Physiol Soc, Washington DC, pp 1353–1387

    Google Scholar 

  • Bass DA, Thomas ML, Goetzl EI, De Chatelet LR, McCall CE (1981) Lipoxygenase — derived products of arachidonic acid mediate stimulation of hexose uptake in human polymorphonuclear leucocytes. BBRC 100:1–7

    Google Scholar 

  • Bavazzano A, Sidell N, Michelacci S, Sicuteri F (1970) Local ischemia as a kininogen depressant: Effect of cortisone, taurine and a kallikrein inhibitor. Adv Exp Med Biol 8:377–382

    Google Scholar 

  • Beatty CH, Bocek RM (1972) Prostaglandins: Their effect on the carbohydrate metabolism of myometrium from rhesus monkeys. Endocrinology 90:1295–1300

    Google Scholar 

  • Bereziat G, Wolf C, Colard O, Polonovski J (1978) Phospholipases of plasmic membranes of adipose tissue. Possible intermediaries for insulin action. Adv Exp Biol Med 101:191–199

    Google Scholar 

  • Berger M, Hagg S, Ruderman NB (1975) Glucose metabolism in perfused skeletal muscle. Interaction of insulin and exercise on glucose uptake. Biochem J 146:231–238

    Google Scholar 

  • Bergström S, Carlson LA (1965) Inhibitory action of prostaglandin E1 on the mobilization of free fatty acids and glycerol from human adipose tissue in vitro. Acta Physiol Scand 63:195–196

    Google Scholar 

  • Berne RM, Rubio R, Dobson IG, Curnish RL (1971) Adenosine and adenosine nucleotides as possible mediators of cardiac and skeletal muscle blood flow regulation. Circ Res 28:115

    Google Scholar 

  • Bevegard S, Orö L (1969) Effect of prostaglandin E1 on forearm blood flow. Scand J Clin Lab Invest 23:347–351

    Google Scholar 

  • Black IA, Feinberg H, Herbaczynska-Cedro K, Vane J (1975) Anoxia-induced release of prostaglandins in rabbit isolated hearts. Circ Res 36:34–42

    Google Scholar 

  • Blecher M (1967) Effects of insulin and phospholipase A on glucose transport across the plasma membrane of free adipose cells. Biochim Biophys Acta 137:557–571

    Google Scholar 

  • Böhle E, Döbert E, Amon J, Ditschuneit H (1966) Über Stoffwechselwirkungen von Prostaglandinen. I. Der Einfluß von PGE1 auf den Glukose- und Fettstoffwechsel des epididymalen Fettgewebes der Ratte. Diabetologia 2:162–168

    Google Scholar 

  • Boerhaave H (1921) Inst med 1775, 400 after Gunther H: Über den Muskelfarbstoff. Virchows Arch Pathol Anat 230:146–154

    Google Scholar 

  • Böttger I, Wicklmayr M, Dietze G (1979) Sensitivity of human skeletal muscle and liver to exogenous insulin. Eur J Clin Invest 9:5–6

    Google Scholar 

  • Bouchardat M (1865) De l'entrainment on l'exercise forcé appliqué au traitement de la glucoseurie. Annuaire de thérapeutic de matière medical pour 1865, pp 291–335

  • Bowery B, Lewis GP (1973) Inhibition of functional vasodilation and prostaglandin formation in rabbit adipose tissue by indomethacin and aspirin. Br J Pharmacol 47:305–314

    Google Scholar 

  • Brandt PW (1962) A study of pinocytosis in muscle capillaries. Anat Rec 142:219–231

    Google Scholar 

  • Bryan FT, Ryan JW, Niemeyer RS (1972) Bradykininogen synthesis by liver. Adv Exp Med Biol 21:43–47

    Google Scholar 

  • Bürger M, Kramer H (1928) Über die durch Muskelarbeit hervorgerufene Steigerung der Insulinwirkung auf den Blutzuckergehalt beim normalen und gestörten Kohlenhydratstoffwechsel und ihre praktische und theoretische Bedeutung. Klin Wochenschr 7:745–750

    Google Scholar 

  • Camu F, Rasio E (1972) Peripheral glucose uptake in relation to physiological levels of plasma and lymph insulin. Eur J Clin Invest 2:188–192

    Google Scholar 

  • Carretero O, Nasjletti A, Fasciolo JC (1965) The kinin content of human blood at rest and during vasodilation. Experientia 21:141–142

    Google Scholar 

  • Chaveau MA, Kaufman M (1887) Expériences pour la détermination du coefficient de l'activité nutritive et respiratoire des muscles en repos et en travail. Compt Rend Acad Sci 104:1126–1132

    Google Scholar 

  • Colman RW, Bagdasarian A (1976) Human kallikrein and prokallikrein. Methods Enzymol 45:303–314

    Google Scholar 

  • Corsi A, Zatti M, Midrio M, Granata AL (1970) In situ oxidation of lactate by skeletal muscle during intermittent exercise. FEBS Lett 11:65–67

    Google Scholar 

  • Corthron J, Imanari T, Yoshida H, Kaizu T, Pierce IV, Pisano II (1979) Isolation of prokallikrein from human urine. Adv Exp Med Biol 120 B:575–579

    Google Scholar 

  • Czech MP, Fain JN (1972) Antagonism of insulin action on glucose metabolism in white fat cells by dexamethasone. Endocrinology 91:518–522

    Google Scholar 

  • Czech MP (1981) Insulin action. JAMA 70:142–150

    Google Scholar 

  • Dawes GS (1941) The vasodilator action of potassium. J Physiol 99:224–227

    Google Scholar 

  • Dietze G, Wicklmayr M (1977a) Evidence for a participation of the kallikrein-kinin system in the regulation of muscle metabolism during muscular work. FEBS Lett 74:205–208

    Google Scholar 

  • Dietze G, Wicklmayr M (1977b) Effekt von Bradykinin auf die Glukoseaufnahme durch die Muskulatur beim Menschen. Klin Wochenschr 55:357–358

    Google Scholar 

  • Dietze G, Wicklmayr M, Mayer L (1977) Evidence for a participation of the kallikrein-kinin system in muscle metabolism during hypoxia. Hoppe-Seylers Z Physiol Chem 358:633–638

    Google Scholar 

  • Dietze G, Wicklmayr M, Mayer L, Boettger I, v. Funcke H (1978a) Bradykinin and human forearm metabolism: inhibition of endogenous prostaglandin systhesis. Hoppe-Seylers Z Physiol Chem 359:369–378

    Google Scholar 

  • Dietze G, Wicklmayr M, Böttger I, Mayer L (1978b) Inhibition of insulin action on glucose uptake into skeletal muscle by a kallikrein-trypsin inhibitor. Hoppe-Seylers Z Physiol Chem 359:1209–1215

    Google Scholar 

  • Dietze G, Wicklmayr M, Böttger I, Mayer L (1978c) Insulin action on glucose uptake into skeletal muscle: Inhibition of endogenous biosynthesis of prostaglandins. FEBS Lett 92:294–298

    Google Scholar 

  • Dietze G, Wicklmayr M, Böttger I, Schifman R, Geiger R, Fritz H, Mehnert H (1980) The kallikrein-kinin system and muscle metabolism: Biochemical aspects. Agents and Actions 10:335–338

    Google Scholar 

  • Dietze G, Wicklmayr M, Lichtneckert E, Schifman R, Waczek SL, Brunnbauer S, Boettger I, Geiger R, Fritz H, Mehnert H (1981a) Evidence for an involvement of kinins and prostaglandins in the modulation of the action of insulin induced by changes of the energy state in skeletal muscle tissue. In: McConn R (ed) The role of chemical mediators in hemodynamic and metabolic failure in the critically ill. Raven Press, New York

    Google Scholar 

  • Dietze G, Wicklmayr M, Guenther B, Schifman R, Geiger R, Boettger I, Fritz H, Heberer G, Mehnert H (1981b) Improvement of insulin action on carbohydrate and protein metabolism by bradykinin in stress-induced insulin resistance in the acutely ill. In: McConn R (ed) The role of chemical mediators in hemodynamic and metabolic failure in the critically ill. Raven Press, New York

    Google Scholar 

  • Edery H, Lewis GP (1962) Inhibition of plasma kininases activity at slightly acid pH. Br J Pharmacol 19:299–305

    Google Scholar 

  • Edery H, Lewis GP (1963) Kinin-forming activity and histamine in lymph after tissue injury. J Physiol 169:568–583

    Google Scholar 

  • Erdös EG, Wilde AF (1970) Bradykinin, kallidin and kallikrein. Handbook of Experimental Pharmacology, Bd 25. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Erdös EG (1979) Bradykinin, kallidin and kallikrein. Handbook of Experimental Pharmacology, XXV, Suppl. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Euler US v (1934) Zur Kenntnis der pharmakologischen Wirkungen von Nativsekreten und Extrakten männlicher accessorischer Geschlechtsdrüsen. Naunyn-Schmiedebergs Arch Exp Pathol Pharmakol 175:78–85

    Google Scholar 

  • Euler US v (1939) Weitere Untersuchungen über Prostaglandin, die physiologisch aktive Substanz gewisser Genitaldrüsen. Skand Arch Physiol 81:1182–1188

    Google Scholar 

  • Ferreira SH, Vane JR (1967) Prostaglandins: Their disappearance from and release into the circulation. Nature 216:868–875

    Google Scholar 

  • Fiedler R (1979) Enzymology of glandular kallikreins. In: Erdös EG (ed) Bradykinin, kallidin and kallikrein. Handbook of Experimental Pharmacology, XXV, Suppl. Springer, Berlin Heidelberg New York, pp 103–154

    Google Scholar 

  • Fiedler F, Gebhard W (1980) Isolation and characterization of native single chain prorcine pancreatic kallikrein, another possible precursor of urinary kallikrein. Hoppe-Seylers Z Physiol Chem 361:166–171

    Google Scholar 

  • Fleisch A, Sibul I (1933) Über nutritive Kreislaufregulierung. II. Die Wirkung von pH, intermediären Stoffwechselprodukten und anderen biochemischen Verbindungen. Pfluegers Arch 231:787–791

    Google Scholar 

  • Folkow B (1960) Role of the nervous system in the control of vascular tone. Circulation 21:760–767

    Google Scholar 

  • Fontana F (1785) Beobachtung über die Natur des thierischen Körpers. Leipzig, p 76

  • Fox RR, Hilton SM (1958) Bradykinin formation in human skin as a factor in heat vasodilation. J Physiol 142:219–223

    Google Scholar 

  • Frey EK, Kraut H (1926) Über einen von der Niere ausgeschiedenen, die Herztätigkeit anregenden Stoff. Hoppe-Seylers Z Physiol Chemie 157:32–61

    Google Scholar 

  • Frey EK (1929) Über die therapeutische Verwendbarkeit des Kreislaufhormons. Arch Klin Chir 157:399–403

    Google Scholar 

  • Frey EK (1930) Zur Deutung der reaktiven Hyperämie. Arch Klin Chir 162:334–340

    Google Scholar 

  • Frey EK, Kraut H, Werle E (1968) Das Kallikrein-Kinin-System und seine Inhibitoren. Enke, Stuttgart

    Google Scholar 

  • Fritz H, Tschesche H, Greene L, Truscheit E (1974) Proteinase inhibitors. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fritz H (1980) Proteinase inhibitors in severe inflamatory processes (septic shock and experimental endotoxaemia): Biochemical, pathophysiological and therapeutic aspects. In: Ciba Foundation, Vol 75. Protein degradation in health and disease. Excerpta Medica, pp 351–379

  • Garcia-Leme J, Böhm GM, Migliorini RH, De Sonza MZA (1974) Possible participation of insulin in the control of vascular permeability. Eur J Pharmacol 29:298–306

    Google Scholar 

  • Gaskell WH (1877) The changes of the blood-stress in muscles through stimulation of their nerves. J Anat 11:360–368

    Google Scholar 

  • Gaskell WH (1880) On the tonicity of the heart and blood vessels. J Physiol 3:48–51

    Google Scholar 

  • Geiger R, Feifel M, Haberland GL (1977) A precursor of kinins in the gastric mucus. Hoppe-Seylers Z Physiol Chem 358:931–933

    Google Scholar 

  • Geiger R, Clausnitzer B, Fink E, Fritz H (1980) Isolation of an enzymatically active glandular kallikrein from human plasma by immuno-affinity chromatography. Hoppe-Seylers Z Physiol Chem 361:1795–1803

    Google Scholar 

  • Goetzl EI, Austen KF (1974) Stimulation of human neutropil leucocyte aerobic glucose metabolism by purified chemotactic factors. J Clin Invest 53:591–599

    Google Scholar 

  • Goldberg AL (1967) Work-induced growth of skeletal muscle in normal and hypophysectomized rats. Am J Physiol 213:1193–1198

    Google Scholar 

  • Goldberg AL (1968) Role of insulin in work-induced growth of skeletal muscle. Endocrinology 83:1071–1073

    Google Scholar 

  • Goldblatt MW (1933) A depressor substance in seminal fluid. J Soc Chem Ind (Lond) 52:1056

    Google Scholar 

  • Goldstein MS (1961) Humoral nature of hypoglycemia in muscular exercise. Am J Physiol 200:67–70

    Google Scholar 

  • Goodfriend TL, Ball DL (1969) Radioimmunoassay of bradykinin: Chemical modification to use of radioactive iodine. J Lab Clin Med 73:501–508

    Google Scholar 

  • Günther B, Wicklmayr M, Dietze G, Böttger I, Geiger R, Schultis K (1978) Beeinflussung der postoperativ gestörten Glukosetoleranz durch Bradykinin. Chirurg 49:244–245

    Google Scholar 

  • Gundersen HJG, Christensen NJ (1977) Intravenous insulin causing loss of intravascular water and albumin and increased adrenergic nervous activity in diabetics. Diabetes 26:551–557

    Google Scholar 

  • Haberland GL (1978) The role of kininogenases, kinin formation and kininogenase inhibition in post traumatic shock and related conditions. Klin Wochenschr 56:325–331

    Google Scholar 

  • Haberland G, McConn R (1979) A rationale for the therapeutic action of aprotinin. Fed Proc 38:2760–2767

    Google Scholar 

  • Habermann E (1970) Kininogens. In: Erdös EG (ed) Bradykinin, ballidin and kallikrein. Springer, Berlin Heidelberg New York, pp 250–271

    Google Scholar 

  • Hagenfeldt, L, Wahren J (1968) Human forearm muscle metabolism during exercise. II. Uptake, release and oxidation of individual FFA and glycerol. Scand J Clin Lab Invest 21:263–266

    Google Scholar 

  • Hamberg M, Samuelson B (1973) Detection and isolation of an endoperoxide intermediate in prostaglandin biosynthesis. Proc Natl Acad Sci USA 70:899–903

    Google Scholar 

  • Hansen RJ, Roggeveen AE, Morin D, Peavy DE (1976) Comparison of insulin and other agents on glucose uptake and protein synthesis in rat adipose tissue. Diabetes 25:[Suppl] 366

    Google Scholar 

  • Havel RJ (1970) Lipid as an energy source. In: Briskey EJ (ed) Physiology and biochemistry of muscle as a food. Univ Wisconsin Press, pp 121–145

  • Havivi E, Wertheimer HE (1964) A muscle activity factor increasing sugar uptake by rat diaphragma in vitro. J Physiol (Lond) 172:342–352

    Google Scholar 

  • Heber H, Geiger R, Heimburger N (1978) Human plasma kallikrein: purification, enzyme characterization and quantitative determination in plasma. Hoppe-Seylers Z Physiol Chem 359:659–669

    Google Scholar 

  • Helmreich E, Cori CF (1957) Studies of tissue permeability. I. The distribution of pentoses between plasma and muscle. J Biol Chem 224:663

    Google Scholar 

  • Herbaczynska-Cedro K, Staszeewska-Barczak J, Janczewska H (1974) The release of prostaglandin-like substances during reactive and functional hyperemia in the hindlimb of the dog. Polish J Pharmacol Pharm 26:167–170

    Google Scholar 

  • Hidaka H, Howard BV, Kosmakos FC, Fields RM, Craig JW, Bennet PH, Larner J (1980) Insulin stimulation of glycogen synthase in cultured human diploid fibroblasts. Diabetes 29:806–810

    Google Scholar 

  • Hilton SM, Lewis GP (1956) The relationship between glandular activity, bradykinin formation and functional vasodilation in the submandibular salivary gland. J Physiol (Lond) 134:471–483

    Google Scholar 

  • Hilton SM (1960) Plasmakinin and blood flow. Polypeptides which affect smooth muscle and blood vessels. Pergamon Press, London

    Google Scholar 

  • Hilton SM, Vrbová G (1970) Inorganic phosphate a new candidate for mediator of functional vasodilation in skeletal muscle. J Physiol 206:29–33

    Google Scholar 

  • Hilton SM, Jeffries MG, Vrbová G (1970) Functional specialisation of the vascular bed of soleus. J Physiol 206:543–547

    Google Scholar 

  • Hirche H, Grün D, Waller W (1970) Utilization of carbohydrates and free fatty acids by the gastrocnemius of the dog during longlasting rhythmical exercise. Pfluegers Arch 327:121–126

    Google Scholar 

  • Hirsch EF, Nagajima T, Oshima G, Erdös EG, Herman CM (1974) Kinin system responses in sepsis after trauma in man. J Surg Res 17:147–153

    Google Scholar 

  • Holm J, Bylund-Fellenius AC, Hammarsten J, Schersten T, Krotkiewsky M (1980) Fibre types and capillary supply in the gastrocnemius muscle of patients with intermittend claudication. Eur J Clin Invest 10:16–20

    Google Scholar 

  • Honig CR (1968) Control of smooth muscle actomyosin by phosphate and 5-AMP: Possible role in metabolic autoregulation. Microvascular Res 1:133–139

    Google Scholar 

  • Hudlická O (1973) Muscle blood flow: Its relation to muscle metabolism and function. Swets and Zeitlinger, Amsterdam

    Google Scholar 

  • Hulthen UL, Borge T (1976) Determination of bradykinin in blood by a sensitive radioimmunoassay. Scand J Clin Lab Invest 36:833–839

    Google Scholar 

  • Hultström D, Svensjö (1977) Simultaneous fluorescence and electron microscopical detection of bradykinin induced macromolecular leakage. Bibl Anat 15:466–468

    Google Scholar 

  • Hyman C, Paldino RL (1967) Influence of intravascular and topically administered bradykinin on microcirculation of several tissues. Bibl Anat 9:38–47

    Google Scholar 

  • Igic R, Erdös EG, Yeh HSJ, Sorvells K, Nakajima T (1972) The angiotensin I converting enzyme of the lung. Circ Res 31:II-51–61

    Google Scholar 

  • Johnson AR (1979) Effect of kinins on organ systems. In: Erdös EG (ed) Bradykinin, kallidin and kallikrein. Handbook of Exp Pharmacology, XXV [Suppl]. Springer, Berlin Heidelberg New York, pp 357–399

    Google Scholar 

  • Johnson M, Harrison HE, Raftery AT, Elder JB (1979) Vascular prostacyclin may be reduced in diabetes in man. Lancet 1:325–326

    Google Scholar 

  • Joyner WC, Carter RD, Raizes GS, Renkin EM (1974) Influence of histamine and some other substances on blood-lymph transport of plasma protein and dextran in the dog paw. Microvasc Res 7:19–30

    Google Scholar 

  • Kahn RC (1979) Insulin action. TIBS 4:N 263–266

    Google Scholar 

  • Kalant N, Leibovici T, Rohan I, McNeill K (1978) Effect of exercise on glucose and insulin utilization in the forearm. Metabolism 27:333–401

    Google Scholar 

  • Karim SMM (1976) Prostaglandins: Physiological, pharmacological and pathological aspects. MTP-Press, Clark, Edinburgh

    Google Scholar 

  • Kiechle FL, Kotagal N, Popp DA, Jarett L (1980) Isolation from rat adipocytes of a chemical mediator for insulin activation of pyruvate dehydrogenase. Diabetes 29:852–855

    Google Scholar 

  • Kilbom A, Wennmalm A (1976) Endogenous prostaglandins as local regulators for blood flow in man: effect of indomethacin on reactive and functional hyperemia. J Physiol (Lond) 257:109–121

    Google Scholar 

  • Kjellmer I (1964) The effect of exercise on the vascular bed of skeletal muscle. Acta Physiol Scand 62:18–26

    Google Scholar 

  • Kjellmer I (1965a) The potassium ion as a vasodilator during muscular exercise. Acta Physiol Scand 63:460–468

    Google Scholar 

  • Kjellmer I, Odelram H (1965b) The effect of some physiological vasodilators on the vascular bed of skeletal muscle. Acta Physiol Scand 63:94–99

    Google Scholar 

  • Kono T, Barham FW (1971) Insulin-like effects of trypsin on fat cells. J Biol Chem 246:6204–6209

    Google Scholar 

  • Kramer K, Obal F, Quensel W (1939) Untersuchungen über den Muskelstoffwechsel des Warmblüters III. Mitteilung. Die Sauerstoffaufnahme des Muskels während rhythmischer Tätigkeit. Pfluegers Arch 241:717–729

    Google Scholar 

  • Kraut H, Frey EK, Werle E (1930) Der Nachweis eines Kreislaufhormons in der Pankreasdrüse. Hoppe-Seylers Z Physiol Chem 189:97–106

    Google Scholar 

  • Kraut H, Frey EK, Werle E (1930) Über die Inaktivierung des Kallikreins. Hoppe-Seylers Z Physiol Chem 192:1–21

    Google Scholar 

  • Krebs HA (1972) The Pasteur effect and the relations between respiration and fermentation. Essays Biochem 8:1–35

    Google Scholar 

  • Külz E (1874) Beiträge zur Pathologie und Therapie des Diabetes, Vol I, Marburg

  • Kunze H, Vogt W (1971) Significance of phospholipase A for prostaglandin formation. Ann NY Acad Sci 180:123–125

    Google Scholar 

  • Kuo JF, Holmlund CE, Dill IK (1966) The effect of proteolytic enzymes on isolated adipose cells. Life Sci 5:2257–2262

    Google Scholar 

  • Lands WEM, Rome LH (1976) Inhibition of prostaglandin biosynthesis. In: Karim SMM (ed) Prostaglandins: Chemical and biochemical aspects. MTP, Press, Lancaster, pp 87–101

    Google Scholar 

  • Lewis DH, Rybeck B, Sandegard J, Seeman T, Zachrisson BE (1974) Activation of the kinin system in trauma. In: Pisano JJ, Austen KF (eds) Chemistry and biology of the kallikreinkinin-system in health and disease. DHEW-Publication, No (NIH) 76–791, 539–540

  • Mashford ML, Roberts ML (1972) Determination of blood kinin levels by radioimmunoassay. Biochem Pharmacol 21:2727–2731

    Google Scholar 

  • Maxwell GM (1967) The effect of prostaglandin E1 upon the general and coronary hemodynamics and metabolism of the intact dog. Br J Pharmac 31:162–168

    Google Scholar 

  • McCarthy DA, Potter DE, Nicolaides ED (1965) An in vivo estimation of the potencies and half-lives of synthetic bradykinin and kallidin. J Pharmacol Exp Ther 148:117–122

    Google Scholar 

  • McConn R, Wasserman F, Haberland GL (1979) The effect of bradykinin infusion on hemodynamic and metabolic function in the control animal and in hemorrhagic shock. Fed Proc 38:686

    Google Scholar 

  • McConn R, Wasserman F, Haberland GL (1981) The kallikreinkinin system in hemorrhagic shock and sepsis. In: McConn R (ed) The role of chemical mediators in hemodynamic and metabolic failure in the critically ill. Raven Press, New York

    Google Scholar 

  • McGiff JC, Terragno NA, Malik KU, Lonigro AJ (1972) Release of a prostaglandin E-like substance from canine kidney by bradykinin. Circ Res 31:36–43

    Google Scholar 

  • McGiff JC, Itskovitz HD, Terragno A, Wong PYK (1976) Modulation and mediation of the action of the renal kallikrein-kinin system by prostaglandins. Fed Proc 35:175–180

    Google Scholar 

  • Mellander S, Lundvall J (1971) Role of tissue hyperosmolality in exercise hyperemia. Circ Res 28:29

    Google Scholar 

  • Miles DW, Hayter CJ (1968) The effect of intravenous insulin on the circulatory responses to tilting in normal and diabetic subjects with special reference to baroreceptor reflex block and atypical hypoglycaemic reaction. Clin Sci 34:419–430

    Google Scholar 

  • Moniusko-Jakoniuk J, Wisniewski K, Ropelewska J (1976) The influence of kinins on the metabolic effects of chosen drugs. Biochem Pharmacol 25:2593–2598

    Google Scholar 

  • Murakami N, Hori S, Masumura S (1968) Exercise proteinuria and proteinuria induced by kallikreins. Nature 218:481–483

    Google Scholar 

  • Nakata K (1971) Synergistic effect of urinary kallikrein and histamine in exercise proteinuria. Mie Med J 21:129–139

    Google Scholar 

  • Needleman O, Key SL, Denny SE, Tsakson PC, Marshall GR (1975) Mechanism and modification of bradykinin-induced coronary vasodilation. Proc Natl Acad Sci 72:2060–2063

    Google Scholar 

  • Neely JR, Bowman RH, Morgan HE (1968) Conservation of glycogen in the perfused rat heart developing intravascular pressure. In: Whelan WJ (ed) Control of glycogen metabolism. Academic Press, New York, pp 50–64

    Google Scholar 

  • Newsholme EA (1973) Regulation of carbohydrate metabolism in muscle: Identification of regulatory enzymes. In: Newsholme EA, Start C (eds) Regulation in metabolism. J Wiley and Sons, London, p 103

    Google Scholar 

  • Nishimura K, Alhenc-Gelas F, White A, Erdös EG (1980) Activation of the membrane-bound kallikrein and renin in the kidney. Proc Natl Acad Sci 77:4975–4978

    Google Scholar 

  • Nugteren DH, Hazelhof E (1973) Isolation and properties of intermediates in prostaglandin biosynthesis. Biochem Biophys Acta 326:448–461

    Google Scholar 

  • Örstavik TB, Brandtzaeg P, Nustad K, Halvorsen KM (1975) Cellular localization of kallikreins in rat submandibular and sublingual salivary glands. Acta Histochem (Jena) 54:183–192

    Google Scholar 

  • Olefsky W (1977) Interaction between insulin receptors and glucose transport: Effect of prostaglandin E2. Biochem Biophys Res Comm 75:271–276

    Google Scholar 

  • Osterby R, Gundersen HJG, Christensen NJ (1978) The acute effect of insulin on capillary endothelial cells. Diabetes 27:475–449

    Google Scholar 

  • Ottlecz A, Gecse A, Koltai M, West GB (1977) Involvement of the kinin system in the insulin-induced inhibition of carrageenin oedema in rats. Monogr Allergy 12:131–137

    Google Scholar 

  • Owen TL, Ehrhart IC, Weidner WJ, Scott JB, Haddy FJ (1975) Effects of indomethacin on local blood flow regulation in canine heart and kidney. Proc Soc Exp Biol Med 149:871–876

    Google Scholar 

  • Pace-Asciak C, Wolfe LS (1971) A novel prostaglandin derivative formed from arachidonic acid by rat stomach homogenates. Biochemistry 10:3657–3664

    Google Scholar 

  • Page M, McB, Watkins PJ (1976) Provocation of postural hypotension by insulin in diabetic autonomic neuropathy. Diabetes 25:90–95

    Google Scholar 

  • Pasteur L (1861) Experiences et oues nouvelles sur la nature des fermentation. Comp Tend Acad Sci 52:1260–1264

    Google Scholar 

  • Pfeiffer M, Kessler G, Doehn M, Horatz K (1979) Blutlaktatspiegel nach großen Oberbaucheingriffen. Med Welt 30:661–663

    Google Scholar 

  • Pozefsky T, Felig P, Tobin JP, Söldner IS, Cahill Jr GF (1969) Amino acid balance across tissues of the forearm in postabsorptive man. Effects of insulin at two dose levels. J Clin Invest 48:2273–2276

    Google Scholar 

  • Rabes HM (1977) Proliferation kinetics of hepatocytes in regenerating rat liver after kallikrein injection. In: Haberland GL, Rohen JW, Suzuki T (eds) Kininogenases. Schattauer, Stuttgart, pp 127–136

    Google Scholar 

  • Rabito SF, Scicli AG, Carretero OA (1980) Immunoreactive glandular kallikrein in Plasma. In: Gross F, Vogel HG (eds) Enzymatic release of vasoactive peptides. Raven Press, New York, pp 63–72

    Google Scholar 

  • Ranvier L (1874) Note sur les vaisseaux sanguins et la circulation dans les muscles rouge. CR Séanc Soc Biol 26:28–41

    Google Scholar 

  • Renold AE (1969) The mechanism of insulin action attempt at synthesis. In: Pfeiffer EF (ed) Handbook of diabetes mellitus: Pathophysiology and clinical considerations. Lehmanns, München, pp 553–568

    Google Scholar 

  • Rense-Blom S (1980) Effect of paracetam on pial vasculature in the rabbit. In: Pathophysiology and pharmacotherapy of cerebral vascular disorders. Witzstrock

  • Rieser P, Rieser CH (1964) Enzymatic hypoglycemia in alloxan diabetic rats. Proc Soc Exp Biol Med 116:669–672

    Google Scholar 

  • Rocha e Silva M, Beraldo WT, Rosenfeld G (1949) Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin. Am J Physiol 156:261

    Google Scholar 

  • Romanul FCA (1965) Capillary supply and metabolism of muscle fibres. Arch Neurol 12:497–501

    Google Scholar 

  • Romanul FCA (1971) Reversal of enzymatic profiles and capillary supply of muscle fibres in fast and slow muscles after cross innervation. In: Pernow B, Saltin B (eds) Muscle metabolism during exercise. Plenum Press, New York, pp 21–32

    Google Scholar 

  • Saameli K, Eskes TKAB (1962) Bradykinin and cardiovascular system: Estimation of half-life. Am J Physiol 203:261–264

    Google Scholar 

  • Sadler W (1869) Über den Blutstrom in den ruhenden, verkürzten und ermüdeten Muskeln des lebenden Tieres. Ber Sächs Ges Wiss Math-Phys, S 195

  • Scharnagel K, Greef K (1966) Änderungen des Kininogengehalts des Plasmas bei Hypoxie u. kokaler Ischämie. Naunyn-Schmiedebergs Arch Pharmacol 253:81–92

    Google Scholar 

  • Schifman R, Wicklmayr M, Boettger I, Dietze G (1978) Insulin-like activity of bradykinin on amino acid balances across the human forearm. Hoppe-Seylers Z Physiol Chem 361:1193–1199

    Google Scholar 

  • Schmid-Schönbein H (1979) Rheologische Deutung des „Nicht-Obturationsinfarktes“. Verh Dtsch Ges Kreislaufforsch 45:23–28

    Google Scholar 

  • Schultz TA, Lewis SB, Westbier DK, Wallin JD, Gerich JE (1977) Glucose delivery: a modulator of glucose uptake in contracting skeletal muscle. Am J Physiol 233:514–518

    Google Scholar 

  • Seals JR, Czech MP (1980) Evidence that insulin activates an intrinsic plasma membrane protease in generating a secondary chemical mediator. J Biol Chem 255:6529–6531

    Google Scholar 

  • Sekiya A, Nakashima M, Maeda K, Yamamoto J, Hirako I, Oya H (1971) Studies on the vascular action of bradykinin. Jp J Pharmacol 21:87–95

    Google Scholar 

  • Shionoya S, Nakata Y, Kamiya K, Inagaki A, Yano T (1971) Influences of bradykinin on the microcirculation. Angiology 22:456–461

    Google Scholar 

  • Silberbauer K, Schernthaner G, Sinzinger R, Pizakatzer H, Winter M (1979) Decreased vascular prostaglandin in juvenile-onset diabetes. N Engl J Med 300:367–370

    Google Scholar 

  • Smith ER, McMorrow JV Jr, Covino BG, Lee JB (1968) Studies on the vasodilator actions of prostaglandin E1. In: Ramwell PW, Shaw JE (eds) Prostaglandins. (Symposium of Worcester Foundation for Exp Biol). Interscience, New York, pp 259–266

    Google Scholar 

  • Soman V, Koivisto V, Grantham P, Felig P (1978) Increased insulin binding to monocytes after exercise: Cellular mechanism of augmented insulin sensitivity. Diabetes 27:[Suppl 2] 449

    Google Scholar 

  • Stürmer E (1966) The influence of intra-arterial infusions of synthetic bradykinin on flow and composition of lymph in dogs. In: Erdös EG, Back N, Sicuteri F (eds) Hypotensive peptides. Springer, New York, pp 368–373

    Google Scholar 

  • Sudmann E, Dregelid E, Bessesen A, Mørland J (1979) Inhibition of fracture healing by indomethacin in rats. Eur J Clin Invest 9:333–339

    Google Scholar 

  • Talamo RC, Goodfriend TL (1979) Bradykinin radioimmunoassay. In: Erdös EG (ed) Bradykinin, kallidin and kallikrein. Handbook of Experimental Pharmacology XXV. [Suppl] Springer, Berlin Heidelberg New York, pp 301–309

    Google Scholar 

  • Terragno DA, Crowshaw K, Terragno NA, McGiff JC (1975) Prostaglandin synthesis by bovine mesenteric arteries and veins. Circ Res 36:[Suppl 1] 76–80

    Google Scholar 

  • Terragno NA, Terragno A (1979) Release of vasoactive substances by kinins. In: Erdös EG (ed) Bradykinin, kallidin and kallikrein. Handbook of Experimental Pharmacology. Springer, Berlin Heidelberg New York, pp 402–426

    Google Scholar 

  • Tooke JE (1980) A capillary pressure disturbance in young diabetics. Diabetes 29:815–819

    Google Scholar 

  • Trousseau A (1882) Clinical medicine, Vol II: Lecture 64. (Lectures delivered at the Hotel Dieu, Paris) P Blakiston, Son and Co. Philadelphia, pp 307–331

    Google Scholar 

  • Tuvemo T, Strandberg K, Hamberg M, Samuelson B (1976) Formation and action of prostaglandin endoperoxides in the isolated human umbilical artery. Acta Physiol Scand 96:145–149

    Google Scholar 

  • Vargaftig BB, Dao Hai N (1972) Selective inhibition by mepacrine of the release of “rabbit aorta contracting substance” evoked by the administration of bradykinin. J Pharm Pharmacol 24:159–161

    Google Scholar 

  • Vaughan M (1967)14C-Glucose uptake, glycogen- and fatty acid synthesis in rat adipose tissue. In: Bergström S, Samuelson B (eds) Prostaglandins. Proc Nobel Symp 2nd. Almquist and Wiksell, Stockholm, pp 139–145

    Google Scholar 

  • Vranic M, Wrenshall GA (1969) Exercise, insulin and glucose turnover in dogs. Endocrinology 85:165–171

    Google Scholar 

  • Vranic M, Berger M (1979) Exercise and diabetes mellitus. Diabetes, 28:147–163

    Google Scholar 

  • Wahren J, Ahlborg G, Felig P, Jorfeldt L (1971) Glucose metabolism during exercise in man. In: Pernow B, Saltin B (eds) Muscle metabolism during exercise. Plenum Press, New York, pp 189–203

    Google Scholar 

  • Webster ME, Skinner NS, Powell VJ (1967) Role of the kinins in vasodilation in skeletal muscle of the dog. Am J Physiol 212:553–558

    Google Scholar 

  • Werle E, Roden P v (1936) Über das Vorkommen von Kallikrein in den Speicheldrüsen und im Mundspeichel. Biochem Ztschr 286:213–219

    Google Scholar 

  • Werle E, Götze W, Keppler A (1937) Über die Wirkung des Kallikreins auf den isolierten Darm und über eine neue darmkontrahierende Substanz. Biochem Z 289:217–225

    Google Scholar 

  • Werle E (1966) Kininogenspiegel im menschlichen Serum nach Verkehrsunfällen. In: Gross R, Kroneberg G (Hrsg) Neue Aspekte der Trasylol-Therapie. Schattauer, Stuttgart, S 176–178

    Google Scholar 

  • Werle E, Zach P (1970) The distribution of kininogen on the serum and tissues of rats and other mammals. J Clin Chem Clin Biochem 8:186–189

    Google Scholar 

  • Whitfield JF, McManus JP, Gillan DJ (1970) Cyclic AMP mediation of bradykinin-induced stimulation of mitotic activity and DNA synthesis in thymocytes. Proc Soc Exp Biol 133:1270–1274

    Google Scholar 

  • Wicklmayr M, Dietze G, Günther B, Mayer L, Böttger I, Geiger R, Schultis K (1978) Verbesserung der gestörten Glukoseverwertung durch Bradykinin bei Diabetikern und bei Patienten im postoperativen Stress. Klin Wochenschr 56:1077–1083

    Google Scholar 

  • Wicklmayr M, Dietze G (1979) Improvement of insulin action by bradykinin in the alloxan-diabetic rat. FEBS Lett 106:125–128

    Google Scholar 

  • Wicklmayr M, Dietze G, Mayer L, Böttger I, Grunst J (1979a) Evidence for an involvement of kinin liberation in the priming action of insulin on glucose uptake into skeletal muscle. FEBS Lett 98:61–65

    Google Scholar 

  • Wicklmayr M, Dietze G, Günther B, Böttger I, Mayr L, Janetschek P (1979b) Improvement of glucose assimilation and protein degradation by bradykinin in maturity onset diabetics and in surgical patients. In: Suzuki et al (eds) Kinins II. Plenum Press, New York, pp 569–576

    Google Scholar 

  • Wieser PB, Fain JN (1975) Insulin, PGE1, phenylisopropyladenosine and nicotinic acid as regulators of fat cell metabolism. Endocrinology 96:1221–1225

    Google Scholar 

  • Willebrands AF, Tasseron SJA (1968) Effect of hormones on substrate preference in isolated rat heart. Am J Physiol 215:1089–1095

    Google Scholar 

  • Zacest R, Mashford ML (1967) Blood bradykinin levels in the human. Aust J Exp Biol Med Sci 45:89–94

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Anläßlich des Weltkongresses „Kinin 1981“ vom 2.–5.11.81 in München

Mit Unterstützung der Deutschen Forschungsgemeinschaft, SFB 51

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietze, G. Neue-Aspekte zur durchblutungssteigernden und insulinähnlichen Wirkung der Muskelarbeit: Mögliche Beteiligung des Kallikrein-Kinin-Prostaglandin Systems. Klin Wochenschr 60, 429–444 (1982). https://doi.org/10.1007/BF01720357

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01720357

Key words

Schlüsselwörter

Navigation