Skip to main content

Advertisement

Log in

Regulation of muscle potassium: exercise performance, fatigue and health implications

  • Invited Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This review integrates from the single muscle fibre to exercising human the current understanding of the role of skeletal muscle for whole-body potassium (K+) regulation, and specifically the regulation of skeletal muscle [K+]. We describe the K+ transport proteins in skeletal muscle and how they contribute to, or modulate, K+ disturbances during exercise. Muscle and plasma K+ balance are markedly altered during and after high-intensity dynamic exercise (including sports), static contractions and ischaemia, which have implications for skeletal and cardiac muscle contractile performance. Moderate elevations of plasma and interstitial [K+] during exercise have beneficial effects on multiple physiological systems. Severe reductions of the trans-sarcolemmal K+ gradient likely contributes to muscle and whole-body fatigue, i.e. impaired exercise performance. Chronic or acute changes of arterial plasma [K+] (hyperkalaemia or hypokalaemia) have dangerous health implications for cardiac function. The current mechanisms to explain how raised extracellular [K+] impairs cardiac and skeletal muscle function are discussed, along with the latest cell physiology research explaining how calcium, β-adrenergic agonists, insulin or glucose act as clinical treatments for hyperkalaemia to protect the heart and skeletal muscle in vivo. Finally, whether these agents can also modulate K+-induced muscle fatigue are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

[Ca2 +]i :

Intracellular calcium concentration

cAMP:

Cyclic adenosine monophosphate

[Cl]i :

Intracellular chloride concentration

ClC-1:

Skeletal muscle sarcolemmal chloride channel

ECFV:

Extracellular fluid volume

ECG:

Electrocardiogram

ICFV:

Intracellular fluid volume

KATP :

ATP-dependent potassium channel

KCa1.1 :

Delayed rectifier potassium channel

Kir :

Inward rectifier potassium channel

[K+]a :

Plasma arterial potassium concentration

[K+]i :

Intracellular potassium concentration

[K+]I :

Interstitial potassium concentration

[K+]o :

Extracellular potassium concentration

[K+]v :

Plasma venous potassium concentration

M-wave:

Compound extracellular muscle action potential

[Na+]i :

Intracellular sodium concentration

NKA:

Na+/K+ ATPase (sodium–potassium pump)

NKCC:

Na+-K+-2Cl cotransporter (sodium–potassium chloride cotransporter)

Resting EM :

Resting membrane potential

RPE:

Rating of perceived exertion

TBW:

Total body water

T-system:

Tubular system

VO2peak:

Peak oxygen consumption

References

  • Agarwal R, Afzalpurkar R, Fordtran JS (1994) Pathophysiology of potassium absorption and secretion by the human intestine. Gastroenterology 107:548–571

    CAS  PubMed  Google Scholar 

  • Ahlborg B, Bergström J, Ekelund LG, Hultman E (1967) Muscle glycogen and muscle electrolytes during prolonged physical exercise. Acta Physiol Scand 70:129–142

    CAS  Google Scholar 

  • Akaike N (1975) Contribution of an electrogenic sodium pump to membrane potential in mammalian skeletal muscle fibres. J Physiol 245:499–520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Albuquerque EX, Thesleff S (1968) The effect of calcium on the skeletal muscle membrane after treatment with phospholipase C. Acta Physiol Scand 72:310–321

    CAS  PubMed  Google Scholar 

  • Allon M, Copkney C (1990) Albuterol and insulin for treatment of hyperkalemia in hemodialysis patients. Kid Int 38:869–872

    CAS  Google Scholar 

  • Allon M, Dansby L, Shanklin N (1993) Glucose modulation of the disposal of an acute potassium load in patients with end-stage renal disease. Am J Med 94:475–482

    PubMed  Google Scholar 

  • Altarawneh MM, Petersen A, Smith R, Rouffet DM, Billaut F, Perry BD, Wyckelsma WL, Tobin A, McKenna MJ (2016) Salbutamol effects on systemic potassium dynamics during and following intense continuous and intermittent exercise. Eur J Appl Physiol 116:2389–2399

    CAS  PubMed  Google Scholar 

  • Amann M, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA (2009) Opioid-mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans. J Physiol 587(1):271–283

    CAS  PubMed  Google Scholar 

  • Amann M, Venturelli M, Ives SJ, McDaniel J, Layec G, Rossman MJ, Richardson RS (2013) Peripheral fatigue limits endurance exercise via a sensory feedback-mediated reduction in spinal motoneuron output. J Appl Physiol 115:335–364

    Google Scholar 

  • Ammar T, Lin W, Higgins A, Hayward LJ, Renaud JM (2015) Understanding the physiology of the asymptomatic diaphragm of the M1592V hyperkalemic periodic paralysis mouse. J Gen Physiol 146(6):509–525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen JB, Gesser J, Wang T (2004) Acidosis counteracts the negative inotropic effect of K+ on ventricular muscle strips from the Toad Bufo marinus. Physiol Biochem Zoo 77(2):223–231

    CAS  Google Scholar 

  • Andersson DC, Betzenhauser MJ, Reiken S, Umanskaya A, Shiomi T, Marks AR (2012) Stress-induced increase in skeletal muscle force requires protein kinase A phosphorylation of the ryanodine receptor. J Physiol 590:6381–6387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong ML, Dua AK, Murrant CL (2007) Potassium initiates vasodilatation induced by a single skeletal muscle contraction in hamster cremaster muscle. J Physiol 581(2):841–852. https://doi.org/10.1113/jphysiol.2007.130013 (Published online 2007 Mar 15)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asif IM, Harmon KG (2017) Incidence and etiology of sudden cardiac death: new updates for athletic departments. Sports Health 9(3):268–279. https://doi.org/10.1177/1941738117694153

    Article  PubMed  PubMed Central  Google Scholar 

  • Atanasovska T, Petersen AC, Rouffet DM, Billaut F, Ng I, McKenna MJ (2014) Plasma K+ dynamics and implications during and following intense rowing exercise. J Appl Physiol 117:60–68

    CAS  PubMed  Google Scholar 

  • Atanasovska T, Smith R, Graff C, Tran CT, Melgaard J, Kanters JK, Petersen AC, Tobin A, Kjeldsen KP, McKenna MJ (2018) Protection against severe hypokalemia but impaired cardiac repolarization after intense rowing exercise in healthy humans receiving salbutamol. J Appl Physiol (1985) 125(2):624–633. https://doi.org/10.1152/japplphysiol.00680.2017

    Article  CAS  Google Scholar 

  • Bailey CS, Moldenhauer HJ, Park SM, Keros S, Meredith AL (2019) KCNMA1-linked channelopathy. J Gen Physiol 151(10):1173–1189. https://doi.org/10.1085/jgp.201912457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker LB, Wolfe AS (2020) Physiological mechanisms determining eccrine sweat composition. Eur J Appl Physiol 120(4):719–752. https://doi.org/10.1007/s00421-020-04323-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballanyi K, Grafe P (1988) Changes in intracellular ion activities induced by adrenaline in human and rat skeletal muscle. Pflügers Arch 411:283–288

    CAS  PubMed  Google Scholar 

  • Bergström J, Guarnieri G, Hultman E (1971) Carbohydrate metabolism and electrolyte changes in human muscle tissue during heavy work. J Appl Physiol 30:122–125

    PubMed  Google Scholar 

  • Bewick NL, Fernandes C, Pitt AD, Rasmussen HH, Whalley DW (1999) Mechanisms of Na+-K+ pump regulation in cardiac myocytes during hyposmolar swelling. Am J Physiol Cell Physiol 276(5):C1091–C1099. https://doi.org/10.1152/ajpcell.1999.276.5.C1091

    Article  CAS  Google Scholar 

  • Bia MJ, DeFronzo RA (1981) Extrarenal potassium homeostasis. Am J Physiol 240(4):F257–F268. https://doi.org/10.1152/ajprenal.1981.240.4.F257

    Article  CAS  PubMed  Google Scholar 

  • Bisogno JL, Langley A, von Dreele MM (1994) Effect of calcium to reverse the electrocardiographic effects of hyperkalaemia in the isolated rat heart: a progressive, dose-response study. Crit Care Med 22:697–704

    CAS  PubMed  Google Scholar 

  • Blum H, Schnall MD, Chance B, Buzby GP (1988) Intracellular sodium flux and high-energy phosphorus metabolites in ischemic skeletal muscle. Am J Physiol Cell Physiol 255:C377–C384

    CAS  Google Scholar 

  • Broch-Lips M, de Paoli F, Pedersen TH, Overgaard K, Nielsen OB (2011) Effects of 8 wk of voluntary unloaded wheel running on K+ tolerance and excitability of soleus muscles in rat. J Appl Physiol 111:212–220

    CAS  PubMed  Google Scholar 

  • Burns WR, Cohen KD, Jackson WF (2004) K+-induced dilation of hamster cremastic arterioles involves both the Na+/K+-ATPase and inward-rectifier K+ channels. Microcirculation 11(3):279–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns SP, Borrani F (2015) β-Adrenergic modulation of skeletal muscle contraction: key role of excitation-contraction coupling. J Physiol 593(21):4713–4727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns SP, Dulhunty AF (1994) β-Adrenoceptor activation slows high-frequency fatigue in skeletal muscle fibers of the rat. Am J Physiol Cell Physiol 266:C1204–C1209

    CAS  Google Scholar 

  • Cairns SP, Lindinger MI (2008) Do multiple ionic interactions contribute to skeletal muscle fatigue? J Physiol 586(17):4039–4054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns SP, Flatman JA, Clausen T (1995) Relation between extracellular [K+], membrane potential and contraction in rat soleus muscle: modulation by the Na+-K+ pump. Pflügers Arch 430:909–915

    CAS  PubMed  Google Scholar 

  • Cairns SP, Hing WA, Slack JR, Mills RG, Loiselle DS (1997) Different effects of raised [K+]o on membrane potential and contraction in mouse fast- and slow-twitch muscle. Am J Physiol Cell Physiol 273:C598–C611

    CAS  Google Scholar 

  • Cairns SP, Hing WA, Slack JR, Mills RG, Loiselle DS (1998) Role of extracellular [Ca2+] in fatigue of isolated mammalian skeletal muscle. J Appl Physiol 84:1395–1406

    CAS  PubMed  Google Scholar 

  • Cairns SP, Ruzhynsky V, Renaud JM (2004) Protective role of extracellular chloride in fatigue of isolated mammalian skeletal muscle. Am J Physiol Cell Physiol 287:C762–C770

    CAS  PubMed  Google Scholar 

  • Cairns SP, Leader JP, Loiselle DS (2011) Exacerbated potassium-induced paralysis of mouse soleus muscle at 37°C vis-à-vis 25°C: implications for fatigue. Pflügers Arch 461:469–479

    CAS  PubMed  Google Scholar 

  • Cairns SP, Leader JP, Loiselle DS, Higgins A, Lin W, Renaud JM (2015) Extracellular Ca2+-induced force restoration in K+-depressed skeletal muscle of the mouse involves an elevation of [K+]i: implications for fatigue. J Appl Physiol 118:662–674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns SP, Inman LAG, MacManus CP, van de Port IGL, Ruell PA, Thom JA, Thompson MW (2017) Central activation, metabolites and calcium handling during fatigue with repeated maximal isometric contractions in human muscle. Eur J Appl Physiol 117:1557–1571

    CAS  PubMed  Google Scholar 

  • Cannon SC (2015) Channelopathies of skeletal muscle excitability. Compr Physiol 5(2):761–790. https://doi.org/10.1002/cphy.c140062

    Article  PubMed  PubMed Central  Google Scholar 

  • Caron G, Decherchi P, Marqueste T (2015) Does metabosensitive afferent fibers activity differ from slow- and fast-twitch muscles? Exp Brain Res 233:2549–2554

    CAS  PubMed  Google Scholar 

  • Ceccarelli B, Fesce R, Grohovaz F, Haimann C (1988) The effect of potassium on exocytosis of transmitter at the frog neuromuscular junction. J Physiol 401:163–183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chamberlain MJ (1964) Emergency treatment for hyperkalaemia. Lancet 1:464–467

    CAS  PubMed  Google Scholar 

  • Chibalin AV, Kovalenko MV, Ryder JW, Féraille E, Wallberg-Henriksson H, Zierath JR (2001) Insulin- and glucose-induced phosphorylation of the Na+, K+-adenosine triphosphatase α-subunits in rat skeletal muscle. Endocrinology 142:3474–3482

    CAS  PubMed  Google Scholar 

  • Choate JK, Nandhabalan M, Paterson DJ (2001) Raised extracellular potassium attenuates the sympathetic modulation of sino-atrial node pacemsking in the isolated guinea-pig atria. Exp Physiol 86(1):19–25

    CAS  PubMed  Google Scholar 

  • Chothia M-Y, Halperin ML, Rensburg MA, Hassan MS, Davids MR (2014) Bolus administration of intravenous glucose in the treatment of hyperkalemia: a randomized controlled trial. Nephron Physiol 126:1–8

    CAS  PubMed  Google Scholar 

  • Christiansen D (2019) Molecular stressors underlying exercise training-induced improvements in K+ regulation during exercise and Na+, K+-ATPase adaptation in human skeletal muscle. Acta Physiol 225(3):e13196

    Google Scholar 

  • Cifelli C, Boudreault L, Gong B, Bercier JP, Renaud JM (2008) Contractile dysfunctions in ATP-dependent K+ channel-deficient mouse muscle during fatigue involve excessive depolarization and Ca2+ influx through l-type Ca2+ channels. Exp Physiol 93:1126–1138

    CAS  PubMed  Google Scholar 

  • Clausen T (2000) Effects of amylin and other peptide hormones on Na+-K+ transport and contractility in rat skeletal muscle. J Physiol 527(1):121–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clausen T (2003) Na+-K+ pump regulation and skeletal muscle contractility. Physiol Rev 83:1269–1324

    CAS  PubMed  Google Scholar 

  • Clausen T (2011) In isolated skeletal muscle, excitation may increase extracellular K+ 10-fold; how can contractility be maintained? Exp Physiol 96(3):356–368

    CAS  PubMed  Google Scholar 

  • Clausen T, Kohn PG (1977) The effect of insulin on the transport of sodium and potassium in rat soleus muscle. J Physiol 265(1):19–42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clausen T, Andersen SLV, Flatman JA (1993) Na+-K+ pump stimulation elicits recovery of contractility in K+-paralysed rat muscle. J Physiol 472:521–536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clausen T, Overgaard K, Nielsen OB (2004) Evidence that the Na+-K+ leak/pump ratio contributes to the difference in endurance between fast- and slow-twitch muscles. Acta Physiol Scand 180:209–216

    CAS  PubMed  Google Scholar 

  • Clifford PS, Hellsten Y (2004) Vasodilatory mechanisms in contracting skeletal muscle. J Appl Physiol 97:393–403

    PubMed  Google Scholar 

  • Collins AJ, Pitt B, Reaven N, Funk S, McGaughey K, Wilson D, Bushinsky DA (2017) Association of serum potassium with all-cause mortality in patients with and without heart failure, chronic kidney disease, and/or diabetes. Am J Nephrol 46(3):213–221. https://doi.org/10.1159/000479802

    Article  CAS  PubMed  Google Scholar 

  • Conway BE (1981) Ionic hydration in chemistry and biophysics [ionenhydratation in chemie und biophysik. 12 aus: studium der physikalischen und theoretischen chemie]. Else Scie Publ Comp Amst NY. https://doi.org/10.1002/bbpc.19820860319

    Article  Google Scholar 

  • Costill DL, Coté R, Fink WJ, van Handel P (1981) Muscle water and electrolyte distribution during prolonged exercise. Int J Sport Med 2:130–134

    CAS  Google Scholar 

  • da Silva AJ, Trindade MAS, Santos DOC, Lima RF (2016) Maximum-likelihood q-estimator uncovers the role of potassium at neuromuscular junctions. Biol Cybern 110:31–40

    PubMed  Google Scholar 

  • Dassau L, Conti LR, Radeke CM, Ptáček LJ, Vandenberg CA (2011) Kir2.6 regulates surface expression of Kir2.x inward rectifier potassium channels. J Biol Chem 286(11):9526–9541

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Paoli FV, Ørtenblad N, Pedersen TH, Jørgensen R, Nielsen OB (2010) Lactate per se improves the excitability of depolarized rat skeletal muscle by reduing the Cl- conductance. J Physiol 588(23):4785–4794

    PubMed  PubMed Central  Google Scholar 

  • de Paoli FV, Broch-Lips M, Pedersen TH, Nielsen OB (2013) Relationship between membrane Cl- conductance and contractile endurance in isolated rat muscles. J Physiol 591(2):531–545

    PubMed  Google Scholar 

  • Decherchi P, Darques JL, Jammes Y (1998) Modifications of afferent activities from Tibialis anterior muscle in rat by tendon vibrations, increase of interstitial potassium or lactate concentration and electrically-induced fatigue. J Peripher Nerv Syst 3:267–276

    CAS  PubMed  Google Scholar 

  • DeFronzo RA, Felig P, Ferrannini E, Wahren J (1980) Effect of graded doses of insulin on splanchnic and peripheral potassium metabolism in man. Am J Physiol 238(5):E421-427

    CAS  PubMed  Google Scholar 

  • Demigné C, Sabboh H, Puel C, Rémésy C, Coxam V (2004) Organic anions and potassium salts in nutrition and metabolism. Nutr Res Rev 17(2):249–258. https://doi.org/10.1079/NRR200485

    Article  CAS  PubMed  Google Scholar 

  • Dempsey JA, Blain GM, Amann M (2014) Are type III-IV muscle afferents required for a normal steady-state hyperpnoea in humans? J Physiol 592(3):464–474

    Google Scholar 

  • Deogenes KG, Kakuris KK, Deogenov VA, Yerullis KB (2007) Electrolyte homeostasis in trained and untrained healthy subjects during prolonged hypokinesia. Clin Biochem 40(8):536–544. https://doi.org/10.1016/j.clinbiochem.2007.01.017

    Article  CAS  PubMed  Google Scholar 

  • Désilets M, Baumgarten CM (1986) Isoproterenol directly stimulates the Na+-K+ pump in isolated cardiac myocytes. Am J Physiol Heart Circl Physiol 251:H218–H225

    Google Scholar 

  • DiFranco M, Quinonez M, Vergara JL (2012) The delayed rectifier potassium conductance in the sarcolemma and the transverse tubular system membranes of mammalian skeletal muscle fibers. J Gen Physiol 140(2):109–137

    PubMed  PubMed Central  Google Scholar 

  • DiFranco M, Hakimjavadi H, Lingrel JB, Heiny JA (2015) Na, K-ATPase α2 activity in mammalian skeletal muscle T-tubules is acutely stimulated by extracellular K+. J Gen Physiol 146:281–294

    CAS  PubMed  PubMed Central  Google Scholar 

  • DiFranco M, Yu C, Quiñonez M, Vergara JL (2015) Inward rectifier potassium currents in mammalian skeletal muscle fibres. J Physiol 593(5):1213–1238. https://doi.org/10.1113/jphysiol.2014.283648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durelli L, Mutani R, Fassio F, Delsedime M (1982) The effects of the increase of arterial potassium upon the excitability of normal and dystrophic myotonic muscles in man. J Neurol Sci 55:249–257

    CAS  PubMed  Google Scholar 

  • Durfey N, Lehnhof B, Bergeson A, Durfey SNM, Leytin V, McAteer K, Schwam E, Valiquet J (2017) Severe hyperkalemia: can the electrocardiogram risk stratify for short-term adverse events? West J Emerg Med 18(5):963–971. https://doi.org/10.5811/westjem.2017.6.33033

    Article  PubMed  PubMed Central  Google Scholar 

  • Duval A, Léoty C (1980) Ionic currents in slow twitch skeletal muscle of the rat. J Physiol 307:23–41

    CAS  PubMed  PubMed Central  Google Scholar 

  • Engstfeld G, Antoni H, Fleckenstein A, Nast A, Hattingberg MV (1961) Die restitution der effegungsforteitung und kontraktionskraft des K+-gelähmten frosch- und säugetiermyokards durch adrenalin. Pflügers Arch 273:145–163

    CAS  Google Scholar 

  • Ettinger PO, Regan TJ, Oldewurtel HA (1974) Hyperkalemia, cardiac conduction, and the electrocardiogram: a review. Am Heart J 88(3):360–371

    CAS  PubMed  Google Scholar 

  • Fakler B, Adelman JP (2008) Control of K(Ca) channels by calcium nano/microdomains. Neuron 59(6):873–881. https://doi.org/10.1016/j.neuron.2008.09.001

    Article  CAS  PubMed  Google Scholar 

  • Fallentin N, Jensen BR, Brystrom S, Sjøgaard G (1992) Role of potassium in the reflex regulation of blood pressure during static exercise in man. J Physiol 451:643–651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira Gregorio J, Pequera G, Manno C, Ríos E, Brum G (2017) The voltage sensor of excitation-contraction coupling in mammals: inactivation and interaction with Ca2+. J Gen Physiol 149(11):1041–1058

    PubMed  PubMed Central  Google Scholar 

  • Fialho D, Griggs RC, Matthews E (2018) Periodic paralysis. Handb Clin Neurol 148:505–520. https://doi.org/10.1016/B978-0-444-64076-5.00032-6

    Article  PubMed  Google Scholar 

  • Fraser JA, Huang CLH, Pedersen TH (2011) Relationships between resting conductances, excitability, and t-system ionic homeostasis in skeletal muscle. J Gen Physiol 138(1):95–116

    PubMed  PubMed Central  Google Scholar 

  • Gamstorp I, Hauge M, Helweg-Larsen HF, Mjönes H (1957) Adynamia episodica hereditaria. A disease clinically resembling familial periodic paralysis but characterized by increasing serum potassium during the paralytic attacks. Am J Med 23:385–390

    CAS  PubMed  Google Scholar 

  • Germinario E, Esposito A, Midrio M, Peron S, Palade PT, Betto R, Danieli-Betto D (2008) High-frequency fatigue of skeletal muscle: role of extracellular Ca2+. Eur J Appl Physiol 104:445–453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman CA, Bennie JA, Leikis MJ, McKenna MJ (2014) Unaccustomed eccentric contractions impair plasma K+ regulation in the absence of changes in muscle Na+, K+-ATPase content. PLoS ONE 9(6):e101039

    PubMed  PubMed Central  Google Scholar 

  • Gosmanov AR, Lindinger MI, Thomason DB (2003) Riding the tides: K+ concentration and volume regulation by muscle Na+-K+-2Cl- cotransport activity. News Physiol Sci 18:196–200. https://doi.org/10.1152/nips.01446.2003

    Article  CAS  PubMed  Google Scholar 

  • Gosmanov AR, Fan Z, Mi X, Schneider EG, Thomason DB (2004) ATP-sensitive potassium channels mediate hyperosmotic stimulation of NKCC in slow-twitch muscle. Am J Physiol Cell Physiol 286:C586–C595

    CAS  PubMed  Google Scholar 

  • Green S, Langberg H, Skovgaard D, Bülow J, Kjær M (2000) Interstitial and arterial-venous [K+] in human calf muscle during dynamic exercise: effect of ischaemia and relation to muscle pain. J Physiol 529(3):849–861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Green HJ, Duhamel TA, Foley KP, Ouyaning J, Smith IC, Stewart RD (2007) Glucose supplements increase human muscle in vitro Na+-K+-ATPase activity during prolonged exercise. Am J Physiol Regul Integr Comp Physiol 293:R354–R362

    CAS  PubMed  Google Scholar 

  • Grob D, Liljestrand A, Johns RJ (1957) Potassium movement in normal subjects. Effect on muscle function. Am J Med 23:340–354

    CAS  PubMed  Google Scholar 

  • Gumz ML, Rabinowitz L, Wingo CS (2015) An integrated view of potassium homeostasis. N Engl J Med 373(1):60–72. https://doi.org/10.1056/NEJMra1313341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunnarsson TP, Christensen PM, Thomassen M, Nielsen LR, Bangsbo J (2013) Effect of intensified training on muscle ion kinetics, fatigue development, and repeated short-term performance in endurance-trained cyclists. Am J Physiol Regul Integr Comp Physiol 305:R811–R821

    CAS  PubMed  Google Scholar 

  • Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, San-Guinetti MC, Stühmer W, Wang X (2005) International union of pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev 57(4):473–508

    CAS  PubMed  Google Scholar 

  • Hakimjavadi H, Stiner CA, Radzyukevich TL, Lingrel JB, Norman N, Landero Figueroa JA, Heiny JA (2018) K+ and Rb+ affinities of the Na, K-ATPase α1 and α2 isozymes: an application of ICP-MS for quantification of Na+ pump kinetics in myofibers. Int J Mol Sci 19:2725

    PubMed Central  Google Scholar 

  • Hallén J, Saltin B, Sejersted OM (1996) K+ balance during exercise and role of β-adrenergic stimulation. Am J Physiol Regul Integr Comp Physiol 270:R1347–R1354

    Google Scholar 

  • Hamidi M, Boucher BA, Cheung AM, Beyene J, Shah PS (2011) Fruit and vegetable intake and bone health in women aged 45 years and over: a systematic review. Osteoporos Int 22:1681–1693

    CAS  PubMed  Google Scholar 

  • Hansen AK, Clausen T, Nielsen OB (2005) Effects of lactic acid and catecholamines on contractility in fast-twitch muscles exposed to hyperkalemia. Am J Physiol Cell Physiol 289:C104–C112

    CAS  PubMed  Google Scholar 

  • Hargreaves M, McKenna MJ, Jenkins DG, Warmington SA, Li JL, Snow RJ, Febbraio MA (1998) Muscle metabolites and performance during high-intensity, intermittent exercise. J Appl Physiol 84(5):1687–1691

    CAS  PubMed  Google Scholar 

  • Harmer AR, McKenna MJ, Sutton JR, Snow RJ, Ruell PA, Booth J, Thompson MW, MacKay NA, Stathis CG, Crameri RM, Carey MF, Eager DE (2000) Skeletal muscle metabolic and ionic adaptations during intense exercise following sprint training in humans. J Appl Physiol 89:1793–1803

    CAS  PubMed  Google Scholar 

  • Hayashi M, Shimizu W, Albert CM (2015) The spectrum of epidemiology underlying sudden cardiac death. Circ Res 116(12):1887–1906. https://doi.org/10.1161/CIRCRESAHA.116.304521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayward LJ, Kim JS, Lee MY, Zhou H, Kim JW, Misra K, Salajegheh M, Wu F-F, Matsuda C, Reid V, Cros D, Hoffman EP, Renaud JM, Cannon SC, Brown RH (2008) Targeted mutation of mouse skeletal muscle sodium channel produces myotonia and potassium-sensitive weakness. J Clin Invest 118(4):1437–1449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hegyi B, Chen-Izu Y, Izu L, Bányász T (2019) Altered K+ current profiles underlie cardiac action potential shortening in hyperkalemia and β adrenergic stimulation. Can J Physiol Pharmacol 97(8):773–780. https://doi.org/10.1139/cjpp-2019-0056

    Article  CAS  PubMed  Google Scholar 

  • Hiatt N, Davidson MB, Bonorris G (1972) The effect of potassium chloride infusion on insulin secretion in vivo. Horm Metab Res 4:64–68

    CAS  PubMed  Google Scholar 

  • Hinderling PH (2016) The pharmacokinetics of potassium in humans is unusual. J Clin Pharmacol 56(10):1212–1220. https://doi.org/10.1002/jcph.713

    Article  CAS  PubMed  Google Scholar 

  • Hník P, Vyskočil F (1981) Ion-selective microelectrodes: a new tool for studying ionic movements in working muscles. In the application of ion-selective microelectrodes. Elsevier/North-Holland Biomedical Press, Amsterdam, Ed Zeuthen T 157–172

  • Holbrook JT, Patterson KY, Bodner JE, Douglas LW, Veillon C, Kelsay JL, Mertz W, Smith JC Jr (1984) Sodium and potassium intake and balance in adults consuming self-selected diets. Am J Clin Nutr 40(4):786–793

    CAS  PubMed  Google Scholar 

  • Hoppe LK, Muhlack DC, Koenig W, Carr PR, Brenner H, Schöttker B (2018) Association of abnormal serum potassium levels with arrhythmias and cardiovascular mortality: a systematic review and meta-analysis of observational studies. Cardiovasc Drugs Ther 32(2):197–212. https://doi.org/10.1007/s10557-018-6783-0

    Article  CAS  PubMed  Google Scholar 

  • Hostrup M, Bangsbo J (2017) Limitations in intense exercise performance of athletes: effect of speed endurance training on ion handling and fatigue development. J Physiol 595(9):2897–2913

    CAS  PubMed  Google Scholar 

  • Hostrup M, Kalsen A, Ørtenblad N, Juel C, Mørch K, Rzeppa S, Karlsson S, Backer V, Bangsbo J (2014a) β2-Adrenergic stimulation enhances Ca2+ release and contractile properties of skeletal muscles, and counteracts exercise-induced reductions in Na+-K+ATPase Vmax in trained men. J Physiol 592:5445–5459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hostrup M, Kalsen A, Bangsbo J, Hemmersbach P, Karlsson S, Backer V (2014b) High-dose inhaled terbutaline stimulation increases muscle strength and enhances maximal sprint performance in trained men. Eur J Appl Physiol 114:2499–2508

    CAS  PubMed  Google Scholar 

  • ICRP (2002) Basic anatomical and physiological data for use in radiological protection reference values. ICRP publication 89. Ann ICRP 32:3–4

    Google Scholar 

  • Jazayeri MA, Emert MP (2019) Sudden cardiac death: who is at risk? Med Clin North Am 103(5):913–930. https://doi.org/10.1016/j.mcna.2019.04.006

    Article  PubMed  Google Scholar 

  • Jennische E (1982) Relation between membrane potential and lactate in gastrocnemius and soleus muscle of the cat during tourniquet ischemia and postischemic reflow. Pflügers Arch 394:329–332

    CAS  PubMed  Google Scholar 

  • Jennische E, Hagberg H, Haljamäe H (1982) Extracellular potassium concentration and membrane potential in rabbit gastrocnemius muscle during tourniquet ischemia. Pflügers Arch 392:335–339

    CAS  PubMed  Google Scholar 

  • Jensen R, Nielsen J, Ørtenblad N (2020) Inhibition of glycogenolysis prolongs action potential repriming period and impairs muscle function in rat skeletal muscle. J Physiol 598(4):789–803

    CAS  PubMed  Google Scholar 

  • Joyner MJ, Casey DP (2015) Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev 95(2):549–601. https://doi.org/10.1152/physrev.00035.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juel C (1986) Potassium and sodium shifts during in vitro isometric muscle contraction, and the time course of the ion-gradient recovery. Pflügers Arch 406:458–463

    CAS  PubMed  Google Scholar 

  • Juel C (1988) The effect of β2-adrenoceptor activation on ion-shifts and fatigue in mouse soleus muscles stimulated in vitro. Acta Physiol Scand 134:209–216

    CAS  PubMed  Google Scholar 

  • Juel C (2007) Changes in interstitial K+ and pH during exercise: implications for blood flow regulation. Appl Physiol Nutr Metab 32(5):846–851

    CAS  PubMed  Google Scholar 

  • Juel C, Bangsbo J, Graham T, Saltin B (1990) Lactate and potassium fluxes from human skeletal muscle during and after intense, dynamic, knee extension exercise. Acta Physiol Scand 140:147–159

    CAS  PubMed  Google Scholar 

  • Juel C, Pilegaard H, Nielsen JJ, Bangsbo J (2000) Interstitial K+ in human skeletal muscle during and after dynamic graded exercise determined by microdialysis. Am J Physiol Regul Integr Comp Physiol 278:R400–R406

    CAS  PubMed  Google Scholar 

  • Juel C, Olsen S, Rentsch RL, González-Alonso J, Rosenmeier JB (2007) K+ as a vasodilator in resting human muscle: implications for exercise hyperaemia. Acta Physiol 190:311–318

    CAS  Google Scholar 

  • Juel C, Hostrup M, Bangsbo M (2015) The effect of exercise and beta2-adrenergic stimulation on glutathioylation and function of the Na, K-ATPase in human skeletal muscle. Physiol Rep 3:e12515

    PubMed  PubMed Central  Google Scholar 

  • Jurkat-Rott K, Fauler M, Lehmann-Horn F (2006) Ion channels and ion transporters of the transverse tubular system of skeletal muscle. J Muscle Res Cell Motil 27(5–7):275–290. https://doi.org/10.1007/s10974-006-9088-z

    Article  PubMed  Google Scholar 

  • Karelis AD, Péronnet F, Gardiner PF (2002) Glucose infusion attenuates muscle fatigue in rat plantaris muscle during prolonged indirect stimulation in situ. Exp Physiol 87(5):585–592

    CAS  PubMed  Google Scholar 

  • Karelis AD, Péronnet F, Gardiner PF (2003) Insulin does not mediate the attenuation of fatigue associated with glucose infusion in rat plantaris muscle. J Appl Physiol 95:330–335

    CAS  PubMed  Google Scholar 

  • Karelis AD, Péronnet F, Gardiner PF (2005) Resting membrane potential of rat plantaris muscle fibers after prolonged indirect stimulation in situ: effect of glucose infusion. Can J Appl Physiol 30:105–112

    PubMed  Google Scholar 

  • Keir DA, Duffin J, Millar PJ, Floras JS (2019) Simultaneous assessment of central and peripheral chemoreflex regulation of muscle sympathetic nerve activity and ventilation in healthy young men. J Physiol 597(13):3281–3296. https://doi.org/10.1113/JP277691

    Article  CAS  PubMed  Google Scholar 

  • Kodama I, Wilde A, Janse MJ, Durrer D, Yamada K (1984) Combined effects of hypoxia, hyperkalemia and acidosis on membrane action potential and excitability of guinea-pig ventricular muscle. J Mol Cell Cardiol 16:247–259

    CAS  PubMed  Google Scholar 

  • Kowalchuk JM, Heigenhauser GJF, Lindinger MI, Sutton JR, Jones NL (1988) Factors influencing hydrogen ion concentration in muscle after intense exercise. J Appl Physiol 65(5):2080–2089. https://doi.org/10.1152/jappl.1988.65.5.2080

    Article  CAS  PubMed  Google Scholar 

  • Kristensen M, Juel C (2010) Potassium-transporting proteins in skeletal muscle: cellular location and fibre-type differences. Acta Physiol 198:105–123

    CAS  Google Scholar 

  • Krustrup P, Mohr M, Nybo L, Jensen JM, Nielsen JJ, Bangsbo J (2006a) The Yo-yo IR2 test: physiological response, reliability, and application to elite soccer. Med Sci Sport Exerc 38:1666–1673

    Google Scholar 

  • Krustrup P, Mohr M, Steenberg A, Bencke J, Kjær M, Bangsbo J (2006b) Muscle and blood metabolites during a soccer game: implications for sprint performance. Med Sci Sport Exerc 38:1165–1174

    CAS  Google Scholar 

  • Kubo Y, Adelman JP, Clapham DE, Jan LY, Karschin A, Kurachi Y, Lazdunski M, Nichols CG, Seino S, Vandenberg CA (2005) International union of pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels. Pharmacol Rev 57(4):509–526

    CAS  PubMed  Google Scholar 

  • Kurihara S, Konishi M (1987) Effects of β-adrenoceptor stimulation on intracellular Ca2+ transients and tension in rat ventricular muscle. Pflügers Arch 409:427–437

    CAS  PubMed  Google Scholar 

  • Lam YL, Zeng W, Sauer DB, Jiang Y (2014) The conserved potassium channel filter can have distinct ion binding profiles: structural analysis of rubidium, cesium, and barium binding in NaK2K. J Gen Physiol 144(2):181–192. https://doi.org/10.1085/jgp.201411191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landowne D, Potter LT, Terrar DA (1975) Structure-function relationships in excitable membranes. Annu Rev Physiol 37:485–508. https://doi.org/10.1146/annurev.ph.37.030175.002413

    Article  CAS  PubMed  Google Scholar 

  • Lee FN, Oh G, McDonough AA, Youn JH (2007) Evidence for gut factor in K+ homeostasis. Am J Physiol Renal Physiol 293:F541-547

    CAS  PubMed  Google Scholar 

  • Leitch SP, Paterson DJ (1994a) Interactive effects of K+, acidosis, and catecholamines on isolated rabbit heart: implications for exercise. J Appl Physiol 77(3):1164–1171

    CAS  PubMed  Google Scholar 

  • Leitch SP, Paterson DJ (1994b) Role of Ca2+ in protecting the heart from hyperkalemia and acidosis in the rabbit: implications for exercise. J Appl Physiol 77(5):2391–2399

    CAS  PubMed  Google Scholar 

  • Leppik JA, Aughey RJ, Medved I, Fairweather I, Carey MF, McKenna MJ (2004) Prolonged exercise to fatigue in humans impairs skeletal muscle Na+-K+-ATPase activity, sarcoplasmic reticulum Ca2+ release, and Ca2+ uptake. J Appl Physiol 97:1414–1423

    CAS  PubMed  Google Scholar 

  • Li J, Sinoway LI, Ng Y-C (2006) Aging augments interstitial K+ concentration in active muscle of rats. J Appl Physiol 100:1158–1163

    CAS  PubMed  Google Scholar 

  • Lindinger MI (1995) Potassium regulation during exercise and recovery in humans: Implications for skeletal and cardiac muscle. J Mol Cell Cardiol 27:1011–1022

    CAS  PubMed  Google Scholar 

  • Lindinger MI (2005) Determinants of surface membrane and transverse-tubular excitability in skeletal muscle: implications for high-intensity exercise. Equine Comp Exerc Physiol 2(4):209–217

    Google Scholar 

  • Lindinger MI, Grudzien SP (2003) Exercise-induced changes in plasma composition increase erythrocyte Na+, K+-ATPase, but not Na+-K+-2Cl- cotransporter, activity to stimulate net and unidirectional K+ transport in humans. J Physiol 553(Pt 3):987–997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindinger MI, Heigenhauser GJ (1987) Intracellular ion content of skeletal muscle measured by instrumental neutron activation analysis. J Appl Physiol (1985) 63(1):426–433. https://doi.org/10.1152/jappl.1987.63.1.426

    Article  CAS  Google Scholar 

  • Lindinger MI, Heigenhauser GJF (1988) Ion fluxes during tetanic stimulation in isolated perfused rat hindlimb. Am J Physiol Regul Integr Comp Physiol 254:R117–R126

    CAS  Google Scholar 

  • Lindinger MI, Heigenhauser GJF (2012) Effects of gas exchange on acid-base balance. Compr Physiol 2(3):2203–2254. https://doi.org/10.1002/cphy.c100055

    Article  PubMed  Google Scholar 

  • Lindinger MI, Heigenhauser GJF, McKelvie RS, Jones NL (1990) Role of nonworking muscle on blood metabolites and ions with intense intermittent exercise. Am J Physiol Regul Integr Comp Physiol 258:R1486–R1494

    CAS  Google Scholar 

  • Lindinger MI, Heigenhauser GJF, McKelvie RS, Jones NL (1992) Blood ion regulation during repeated maximal exercise and recovery in humans. Am J Physiol Regul Integr Comp Physiol 262:R126–R136

    CAS  Google Scholar 

  • Lindinger MI, McKelvie RS, Heigenhauser GJF (1995) K+ and Lac- distribution in humans during and after high-intensity exercise: role in muscle fatigue attenuation? J Appl Physiol 78(3):765–777

    CAS  PubMed  Google Scholar 

  • Lindinger MI, Franklin TW, Lands LC, Pedersen PK, Welsh DG, Heigenhauser GJF (1999) Role of skeletal muscle in plasma ion and acid-base regulation after NaHCO3 and KHCO3 loading in humans. Am J Physiol 276(1):R32-43. https://doi.org/10.1152/ajpregu.1999.276.1.R32

    Article  CAS  PubMed  Google Scholar 

  • Lindinger MI, Horn PL, Grudzien SP (1999) Exercise-induced stimulation of K+ transport in human erythrocytes. J Appl Physiol 87:2157–2167

    CAS  PubMed  Google Scholar 

  • Lindinger MI, Franklin TW, Lands LC, Pedersen PK, Welsh DG, Heigenhauser GJF (2000) NaHCO(3) and KHCO(3) ingestion rapidly increases renal electrolyte excretion in humans. J Appl Physiol 88(2):540–550. https://doi.org/10.1152/jappl.2000.88.2.540

    Article  CAS  PubMed  Google Scholar 

  • Lindinger MI, Hawke TJ, Vickery L, Bradford L, Lipskie SL (2001) An integrative, in situ approach to examining K+ flux in resting skeletal muscle. Can J Physiol Pharmacol 79(12):996–1006

    CAS  PubMed  Google Scholar 

  • Lindinger MI, Hawke TJ, Lipskie SL, Schaefer HD, Vickery L (2002) K+ transport and volume regulatory response by NKCC in resting rat hindlimb skeletal muscle. Cell Physiol Biochem 12(5–6):279–292. https://doi.org/10.1159/000067898

    Article  CAS  PubMed  Google Scholar 

  • Lindinger MI, Leung M, Trajcevski KE, Hawke TJ (2011) Volume regulation in mammalian skeletal muscle: the role of sodium-potassium-chloride cotransporters during exposure to hypertonic solutions. J Physiol 589(Pt 11):2887–2899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Linton RA, Band DM (1985) The effect of potassium on carotid chemoreceptor activity and ventilation in the cat. Resp Physiol 59:65–70

    CAS  Google Scholar 

  • Logic JR, Krotkiewski A, Koppius A, Surawicz B (1968) Negative inotropic effect of K+: its modification by Ca++ and acetylstrophanthidin in dogs. Am J Physiol 215(1):14–22

    CAS  PubMed  Google Scholar 

  • Long B, Warix JR, Koyfman A (2018) Controversies in management of hyperkalemia. J Emerg Med 55(2):192–205

    PubMed  Google Scholar 

  • Lucas B, Ammar T, Khogali S, de Jong D, Barbalinardo M, Nishi C, Hayward LJ, Renaud JM (2014) Contractile abnormalities of mouse muscles expressing hyperkalemic peiodic paralysis mutant NaV1.4 channels do not correlate with Na+ influx or channel content. Physiol Genomics 46:385–397

    CAS  PubMed  Google Scholar 

  • MacLean DA, Imadojueu VA, Sinoway LI (2000) Interstitial pH, K+, lactate, and phosphate determined with MSNA during exercise in humans. Am J Physiol Regul Integr Comp Physiol 278:R563–R571

    CAS  PubMed  Google Scholar 

  • Mancinelli R, Botti A, Bruni F, Ricci MA (2007) Soper AK (2007) Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker. J Phys Chem B 111(48):13570–13577. https://doi.org/10.1021/jp075913v

    Article  CAS  PubMed  Google Scholar 

  • Mangels AR (2014) Bone nutrients for vegetarians. Am J Clin Nutr 100(Suppl 1):469S-S475. https://doi.org/10.3945/ajcn.113.071423

    Article  CAS  PubMed  Google Scholar 

  • Marliss EB, Vranic M (2002) Intense exercise has unique effects on both insulin release and its roles in glucoregulation: implications for diabetes. Diabetes 51(Suppl 1):S271–S283. https://doi.org/10.2337/diabetes.51.2007.s271

    Article  CAS  PubMed  Google Scholar 

  • Maughan RJ, Shirreffs SM, Merson SJ, Horswill CA (2005) Fluid and electrolyte balance in elite male football (soccer) players training in a cool environment. J Sports Sci 23(1):73–79

    CAS  PubMed  Google Scholar 

  • McCloskey DI, Mitchell JH (1972) Reflex cardiovascular and respiratory responses originating in exercising muscle. J Physiol 224:173–186

    CAS  PubMed  PubMed Central  Google Scholar 

  • McDonough AA, Youn JH (2017) Potassium homeostasis: the knowns, the unknowns, and the health benefits. Physiol (Bethesda) 32(2):100–111. https://doi.org/10.1152/physiol.00022.2016

    Article  CAS  Google Scholar 

  • McKenna MJ, Schmidt TA, Hargreaves M, Cameron L, Skinner SL, Kjeldsen K (1993) Sprint training increases human skeletal muscle Na+-K+-ATPase concentration and improves K+ regulation. J Appl Physiol 75(1):173–180

    CAS  PubMed  Google Scholar 

  • McKenna MJ, Heigenhauser GJF, McKelvie RS, MacDougall JD, Jones NL (1997) Sprint training enhances ionic regulation during intense exercise in men. J Physiol 501(3):687–702

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna MJ, Medved I, Goodman CA, Brown MJ, Bjorksten AR, Murphy KT, Petersen AC, Sostaric S, Gong X (2006) N-acetycysteine attenuates the decline in muscle Na+, K+ pump activity and delays fatigue during prolonged exercise in humans. J Physiol 576(1):279–288

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna MJ, Bangsbo J, Renaud JM (2008) Muscle K+, Na+, and Cl- disturbances and Na+-K+ pump inactivation: implications for fatigue. J Appl Physiol 104:288–295

    CAS  PubMed  Google Scholar 

  • Medbø JI, Sejersted OM (1990) Plasma potassium changes with high intensity exercise. J Physiol 421:105–122

    PubMed  PubMed Central  Google Scholar 

  • Mohr M, Nielsen JJ, Bangsbo J (2011) Caffeine intake improves intense intermittent exercise performance and reduces muscle interstitial potassium accumulation. J Appl Physiol 111:1372–1379

    CAS  PubMed  Google Scholar 

  • Mohseni M, Silvers S, McNeil R, Diehl N, Vadeboncoeur T, Taylor W, Shapiro S, Roth J, Mahoney S (2011) Prevalence of hyponatremia, renal dysfunction, and other electrolyte abnormalities among runners before and after completing a marathon or half marathon. Sports Health 3(2):145–151. https://doi.org/10.1177/1941738111400561

    Article  PubMed  PubMed Central  Google Scholar 

  • Mølgaard H, Stürup-Johansen M, Flatman JA (1980) A dichrotomy of the membrane potential response of rat soleus muscle fibers to low extracellular potassium concentrations. Pflügers Arch 383(2):181–184

    PubMed  Google Scholar 

  • Moore-Ede MC, Meguid MM, Fitzpatrick GF, Boyden CM, Ball MR (1978) Circadian variation in response to potassium infusion. Clin Pharmacol Ther 23(2):218–227. https://doi.org/10.1002/cpt1978232218

    Article  CAS  PubMed  Google Scholar 

  • Nielsen OB, de Paoli F, Overgaard K (2001) Protective effects of lactic acid on force production in rat skeletal muscle. J Physiol 536(1):161–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen HB, Bredmose PP, Strømstad M, Voliantis S, Quistorff B, Secher NH (2002) Bicarbonate attenuates arterial desaturation during maximal exercise in humans. J Appl Physiol 93:724–731

    PubMed  Google Scholar 

  • Nielsen JJ, Kristensen M, Hellsten Y, Bangsbo J, Juel C (2003a) Localization and function of ATP-sensitive potassium channels in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 284:R558–R563

    CAS  PubMed  Google Scholar 

  • Nielsen JJ, Mohr M, Klarskov C, Kristensen M, Krustrup P, Juel C, Bangsbo J (2003b) Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle. J Physiol 554(3):857–870

    PubMed  PubMed Central  Google Scholar 

  • Nielsen OB, de Paoli FV, Riisager A, Pedersen TH (2017) Chloride channels take center stage in acute regulation of excitability in skeletal muscle: implications for fatigue. Physiology 32:425–434

    CAS  Google Scholar 

  • Nobel D (1979) The Initiation of the Heartbeat. The Clarendon Press, Oxford

    Google Scholar 

  • Nordsborg N, Mohr M, Pedersen LD, Nielsen JJ, Langberg H, Bangsbo J (2003) Muscle interstitial potassium kinetics during intense exhaustive exercise: effect of previous arm exercise. Am J Physiol Regul Integr Comp Physiol 285:R143–R148

    CAS  PubMed  Google Scholar 

  • O’Neill M, Dorrington KL, Paterson DJ (1993) Cardiac sympathetic nerve stimulation enhances cardiovascular performance during hyperkalaemia in the anaesthetized pig. Exp Physiol 78(4):549–552

    PubMed  Google Scholar 

  • O’Neill M, Sears CE, Paterson DJ (1997) Interactive effects of K+, acid, norepinephrine, and ischemia on the heart: implications for exercise. J Appl Physiol 82:1046–1052

    PubMed  Google Scholar 

  • Ogielska EM, Aldrich RW (1999) Functional consequences of a decreased potassium affinity in a potassium channel pore. Ion interactions and C-type inactivation. J Gen Physiol 113(2):347–58. https://doi.org/10.1085/jgp.113.2.347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ørtenblad N, Stephenson DG (2003) A novel signalling pathway originating in mitochondria modulates rat skeletal muscle membrane excitability. J Physiol 548(1):139–145

    PubMed  PubMed Central  Google Scholar 

  • Overgaard K, Nielsen OB, Flatman JA, Clausen T (1999) Relations between excitability and contractility in rat soleus muscle: role of the Na+-K+ pump and Na+/K+ gradients. J Physiol 518(1):215–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson DJ (1996a) Role of potassium in the regulation of systemic physiological function during exercise. Acta Physiol Scand 156(3):287–294

    CAS  PubMed  Google Scholar 

  • Paterson DJ (1996b) Antiarrythmic mechanisms during exercise. J Appl Physiol 80(6):1853–1862

    CAS  PubMed  Google Scholar 

  • Paterson DJ (1997) Potassium and breathing in exercise. Sports Med 23(3):149–163. https://doi.org/10.2165/00007256-199723030-00002

    Article  CAS  PubMed  Google Scholar 

  • Paterson DJ, Robbins PA, Conway J (1989) Changes in arterial plasma potassium and ventilation during exercise in man. Resp Physiol 78:323–330

    CAS  Google Scholar 

  • Paterson DJ, Friedland JS, Bascom DA, Clement ID, Cunningham DA, Painter R, Robbins PA (1990) Changes in arterial K+ and ventilation during exercise in normal subjects and subjects with McArdles syndrome. J Physiol 429:339–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson DJ, Blake GJ, Leitch SP, Phillips SM, Brown HF (1992) Effects of catecholamines and potassium on cardiovascular performance in the rabbit. J Appl Physiol 73(4):1413–1418

    CAS  PubMed  Google Scholar 

  • Paterson DJ, Rogers J, Powell T, Brown HF (1993) Effect of catecholamines on the ventricular myocyte action potential in raised extracellular potassium. Acta Physiol Scand 148:177–186

    CAS  PubMed  Google Scholar 

  • Pedersen TH, de Paoli FV, Nielsen OB (2005) Increased excitability of acidified skeletal muscle: Role of chloride conductance. J Gen Physiol 125:237–246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen TH, de Paoli FV, Flatman JA, Nielsen OB (2009) Regulation of ClC-1 and KATP channels in action potential-firing fast-twitch muscle fibers. J Gen Physiol 134:309–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen KK, Cheng AJ, Westerblad H, Olesen JH, Overgaard K (2019) Moderately elevated extracellular [K+] potentiates submaximal force and power in skeletal muscle via increased [Ca2+]i during contractions. Am J Physiol Cell Physiol 317:C900–C909

    CAS  PubMed  Google Scholar 

  • Perry BD, Wyckelsma VL, Murphy RM, Steward CH, Anderson M, Levinger I, Petersen AC, McKenna MJ (2016) Dissociation between short-term unloading and resistance training effects on skeletal muscle Na+, K+-ATPase, muscle function, and fatigue in humans. J Appl Physiol 121(5):1074–1086. https://doi.org/10.1152/japplphysiol.00558.2016

    Article  CAS  PubMed  Google Scholar 

  • Petersen AC, Murphy KT, Snow RJ, Leppik JA, Aughey RJ, Garnham AP, Cameron-Smith D, McKenna MJ (2005) Depressed Na+-K+-ATPase activity in skeletal muscle at fatigue is correlated with increased Na+-K+-ATPase mRNA expression following intense exercise. Am J Physiol Regul Integr Comp Physiol 289:R288–R274

    Google Scholar 

  • Piitulainen H, Komi P, Linnamo V, Avela J (2008) Sarcolemmal excitability as investigated with M-waves after eccentric exercise in humans. J Electromyo Kinesiol 18:672–681

    Google Scholar 

  • Pirkmajer S, Chibalin AV (2016) Na, K-ATPase regulation in skeletal muscle. Am J Physiol Endocrinol Metab 311(1):E1–E31. https://doi.org/10.1152/ajpendo.00539.2015

    Article  PubMed  Google Scholar 

  • Podrid PJ (1990) Potassium and ventricular arrhythmias. Am J Cardiol 65(10):33E-44E. https://doi.org/10.1016/0002-9149(90)90250-5 (discussion 52E)

    Article  CAS  PubMed  Google Scholar 

  • Poole-Wilson PA (1984) Potassium and the heart. Clin Endocrin Metab 13(2):249–268

    CAS  Google Scholar 

  • Priyamvada S, Gomes R, Gill RK, Saksena S, Alrefai WA, Dudeja PK (2015) Mechanisms underlying dysregulation of electrolyte absorption in inflammatory bowel disease-associated diarrhea. Inflamm Bowel Dis 21(12):2926–2935. https://doi.org/10.1097/MIB.0000000000000504

    Article  PubMed  Google Scholar 

  • Qayyum MS, Barlow CW, O’Connor DF, Paterson DJ, Robbins PA (1994) Effect of raised potassium on ventilation in euoxia, hypoxia, and hyperoxia at rest and during light exercise in man. J Physiol 476(2):365–372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quiñonez M, González F, Morgado-Valle C, DiFranco M (2010) Effects of membrane depolarization and changes in extracellular [K+] on the Ca2+ transients of fast skeletal muscle fibers. Implications for muscle fatigue. J Muscle Res Cell Motil 31:13–33

    PubMed  PubMed Central  Google Scholar 

  • Radzyukevich TL, Lingrel JB, Heiny JA (2009) The cardiac glycoside binding site on the Na, K-ATPase α2 isoform plays a role in the dynamic regulation of active transport in skeletal muscle. PNAS 106:2565–2570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rannou F, Leschiera R, Giroux-Metges MA, Pennec JP (2012) Effect of lactate on the voltage-gated sodium channels of rat skeletal muscle: modulating current opinion. J Appl Physiol 112:1454–1465

    CAS  PubMed  Google Scholar 

  • Renaud JM, Light P (1992) Effects of K+ on the twitch and tetanic contraction in the sartorius muscle of the frog, Rana pipiens. Implication for fatigue in vivo. Can J Physiol Pharmacol 70:1236–1246

    CAS  PubMed  Google Scholar 

  • Rich MM, Pinter MJ (2003) Crucial role of sodium channel fast inactivation in muscle fibre inexcitability in a rat model of critical illness myopathy. J Physiol 547(2):555–566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rizvi MH, Abdul Azeem M, Savanur A (2019) Effects of adrenaline on contractility and endurance of isolated mammalian soleus with different calcium concentrations. J Muscle Res Cell Motil 40:373–378

    CAS  PubMed  Google Scholar 

  • Robertson MJ, Lumley P (1989) Effects of hypoxia, elevated K+ and acidosis on the potency of verapamil, diltiazem and nifedipine in the guinea-pig isolated papillary muscle. Br J Pharmacol 98:937–949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruff RL (1996) Sodium channel slow inactivation and the distribution of sodium channels on skeletal muscle fibres enable the performance properties of different skeletal muscle fibre types. Acta Physiol Scand 156:159–168

    CAS  PubMed  Google Scholar 

  • Ryan DM, Paterson DJ (1996) Restoration of cardiac contraction by angiotensin II during raised [K+]o in the rabbit. Acta Physiol Scand 156:419–427

    CAS  PubMed  Google Scholar 

  • Sahlin K, Alvestrand A, Brandt R, Hultman E (1978) Intracellular pH and bicarbonate concentration in human muscle during recovery from exercise. J Appl Physiol 45(3):474–480

    CAS  PubMed  Google Scholar 

  • Sakamoto K, Kurokawa J (2019) Involvement of sex hormonal regulation of K+ channels in electrophysiological and contractile functions of muscle tissues. J Pharmacol Sci 39(4):259–265. https://doi.org/10.1016/j.jphs.2019.02.009

    Article  CAS  Google Scholar 

  • Saltin B, Sjøgaard G, Gaffney AF, Rowell LB (1981) Potassium, lactate, and water fluxes in human quadriceps muscle during static contractions. Circl Res 48:18–24

    Google Scholar 

  • Sejersted OM, Sjøgaard G (2000) Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol Rev 80(4):1411–1481

    CAS  PubMed  Google Scholar 

  • Shah VN, Wingo TL, Weiss KL, Williams CK, Balser JR, Chazin WJ (2006) Calcium-dependent regulation of the voltage-gated sodium channel hH1: intrinsic and extrinsic sensors use a common molecular switch. PNAS 103(10):3592–3597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shorten PR, Soboleva TK (2007) Anomalous ion diffusion within skeletal muscle transverse tubule networks. Theor Bio Med Model 4:18

    Google Scholar 

  • Sjøgaard G (1983) Electrolytes in slow and fast muscle fibers of humans at rest and with dynamic exercise. Am J Physiol Regul Integr Comp Physiol 245:R25–R31

    Google Scholar 

  • Sjøgaard G, Adams RP, Saltin B (1985) Water and ion shifts in skeletal muscle of humans with intense dynamic knee extension. Am J Physiol Regul Integr Comp Physiol 248:R190–R196

    Google Scholar 

  • Skou JC (1962) Preparation from mammalian brain and kidney of the enzyme system involved in active transport of Na ions and K ions. Biochem Biophys Acta 58:314–325. https://doi.org/10.1016/0006-3002(62)91015-6

    Article  CAS  PubMed  Google Scholar 

  • Söderlund K, Hultman E (1991) ATP and phosphocreatine changes in single human muscle fibers after intense electrical stimulation. Am J Physiol 261(6 Pt 1):E737–E741. https://doi.org/10.1152/ajpendo.1991.261.6.E737

    Article  PubMed  Google Scholar 

  • Spruce AE, Standen NB, Stanfield PR (1985) Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane. Nature 316(6030):736–738. https://doi.org/10.1038/316736a0

    Article  CAS  PubMed  Google Scholar 

  • Stewart RD, Duhamel TA, Foley KP, Ouyang J, Smith IC, Green HJ (2007) Protection of muscle membrane excitability during prolonged cycle exercise with glucose supplementation. J Appl Physiol 103:331–339

    CAS  PubMed  Google Scholar 

  • Stone MS, Martyn L, Weaver CM (2016) Potassium intake, bioavailability, hypertension, and glucose control. Nutrients 8(7):444. https://doi.org/10.3390/nu8070444

    Article  CAS  PubMed Central  Google Scholar 

  • Street D, Nielsen JJ, Bangsbo J, Juel C (2005) Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulation in human skeletal muscle interstitium. J Physiol 566(2):481–489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Surawicz B, Lexington K (1967) Relationship between electrocardiogram and electrolytes. Am Heart J 73(6):814–834

    CAS  PubMed  Google Scholar 

  • Surawicz B, Chlebus H, Mazzoleni A, Lexington K (1967) Hemodynamic and electrocardiographic effects of hyperpotassemia. Differences in response to slow and rapid increases in concentration of plasma K. Am Heart J 73(5):647–664

    CAS  PubMed  Google Scholar 

  • Terwoord JD, Hearon CM, Luckasen GJ, Richards JC, Joyner MJ, Dinenno FA (2018) Elevated extracellular potassium prior to muscle contraction reduces onset and steady-state exercise hyperemia in humans. J Appl Physiol 125:615–623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trenor B, Cardona K, Romero L, Gomez JF, Saiz J, Rajamani S, Belardinelli L, Giles W (2018) Pro-arrhythmic effects of low plasma [K+] in human ventricle: an illustrated review. Trends Cardiovasc Med 28(4):233–242. https://doi.org/10.1016/j.tcm.2017.11.002

    Article  CAS  PubMed  Google Scholar 

  • Tricarico D, Mele A, Conte Camerino D (2005) Phenotype-dependent functional and pharmacological properties of BK channels in skeletal muscle: effects of microgravity. Neurobiol Dis 20(2):296–302. https://doi.org/10.1016/j.nbd.2005.03.011

    Article  CAS  PubMed  Google Scholar 

  • Tupling R, Green H, Stenisterra G, Lepock J, McKee N (2001) Effects of ischemia on sarcoplasmic reticulum Ca2+ uptake and Ca2+ release in rat skeletal muscle. Am J Physiol Endocrinol Metab 281:E224–E232

    CAS  PubMed  Google Scholar 

  • Uwera F, Ammar T, McRae C, Hayward LJ, Renaud JM (2020) Lower Ca2+ enhances the K+-induced force depression in normal and hyperKPP mouse muscles. J Gen Physiol 152(7):e201912511

    PubMed  PubMed Central  Google Scholar 

  • van Mil HG, Geukes Foppen RJ, van Siegenbeek Heukelom J (1997) The influence of bumetanide on the membrane potential of mouse skeletal muscle cells in isotonic and hypertonic media. Br J Pharmacol 120(1):39–44. https://doi.org/10.1038/sj.bjp.0700887

    Article  PubMed  Google Scholar 

  • Vaughan-Jones RD (1982) Chloride activity and its control in skeletal and cardiac muscle. Philos Trans R Soc Lond B Biol Sci 299:537–548

    CAS  PubMed  Google Scholar 

  • Vizi ES, Vyskočil F (1979) Changes in total and quantal release of acetylcholine in the mouse diaphragm during activation and inhibition of membrane ATPase. J Physiol 286:1–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vøllestad NK, Hallén NJ, Sejersted OM (1994) Effect of exercise intensity on potassium balance in muscle and blood of man. J Physiol 475(2):359–368

    PubMed  PubMed Central  Google Scholar 

  • Vyskočil F, Hník P, Rehfeldt H, Vejsada R, Ujec E (1983) The measurement of Ke+ concentration changes in human muscles during volitional contractions. Pflügers Arch 399:235–237

    PubMed  Google Scholar 

  • Wan X, Bryant SM, Hart G (2000) The effects of [K+]o on regional differences in electrical characteristics of ventricular myocytes in guinea-pig. Exp Physiol 85(6):769–774

    CAS  PubMed  Google Scholar 

  • Wang P, Clausen T (1976) Treatment of attacks in hyperkalaemic familial periodic paralysis by inhalation of salbutamol. Lancet 1:221–223

    CAS  PubMed  Google Scholar 

  • Watanabe D, Wada M (2020) Fatigue-induced change in T-system excitability and its major cause in rat fast-twitch skeletal muscle in vivo. J Physiol. https://doi.org/10.1113/JP279574 (Online ahead of print.PMID: 32833287)

    Article  PubMed  Google Scholar 

  • Watanbe I, Gettes LS (2018) Effects of verapamil and pinacidil on extracellular K+, pH, and the incidence of ventricular fibrillation during 60 minutes of ischemia. Int Heart J 59:589–595

    Google Scholar 

  • Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H (2005) International union of pharmacology. LII. Nomenclature and molecular relationships of calcoim-activated potassium channels. Pharmacol Rev 57(4):463–472

    CAS  PubMed  Google Scholar 

  • Weiss J, Shine KI (1982) Extracellular K+ accumulation during myocardial ischemia in isolated rabbit heart. Am J Physiol Heart Circ Physiol 242:H619–H628

    CAS  Google Scholar 

  • Weiss JN, Qu Z, Shivkumar K (2017) The electrophysiology of hypo- and hyperkalemia. Circ Arrhythm Electrophysiol 10(3):e004667. https://doi.org/10.1161/CIRCEP.116.004667

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilde AAM, Aksnes G (1995) Myocardial potassium loss and cell depolarisation in ischaemia and hypoxia. Cardiovasc Res 29:1–15

    CAS  PubMed  Google Scholar 

  • Williams LR, Leggett RW (1987) The distribution of intracellular alkali metals in reference man. Phys Med Biol 32(2):173–190. https://doi.org/10.1088/0031-9155/32/2/002

    Article  CAS  PubMed  Google Scholar 

  • Wong JA, Gosmanov AR, Schneider EG, Thomason DB (2001) Insulin-independent, MAPK-dependent stimulation of NKCC activity in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 281(2):R561–R571. https://doi.org/10.1152/ajpregu.2001.281.2.R561

    Article  CAS  PubMed  Google Scholar 

  • Wyckelsma VL, Perry BD, Bangsbo J, McKenna MJ (2019) Inactivity and exercise training differentially regulate abundance of Na+-K+-ATPase in human skeletal muscle. J Appl Physiol 127(4):905–920. https://doi.org/10.1152/japplphysiol.01076.2018

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Zhang G, Cui J (2015) BK channels: multiple sensors, one activation gate. Front Physiol 6(6):29. https://doi.org/10.3389/fphys.2015.00029

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye P, Zhu YR, Gu Y, Zhang DM, Chen SL (2018) Functional protection against cardiac diseases depends on ATP-sensitive potassium channels. J Cell Mol Med 22(12):5801–5806. https://doi.org/10.1111/jcmm.13893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yensen C, Matar W, Renaud JM (2002) K+-induced twitch potentiation is not due to longer action potential. Am J Physiol Cell Physiol 283:C169–C177

    CAS  PubMed  Google Scholar 

  • Youn JH (2013) Gut sensing of potassium intake and its role in potassium homeostasis. Semin Nephrol 33(3):248–256. https://doi.org/10.1016/j.semnephrol.2013.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young RC, Goloman G (2013) Phasic Oscillations of Extracellular Potassium (Ko) in pregnant rat myometrium. PLoS ONE 8(5):e65110. https://doi.org/10.1371/journal.pone.0065110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan P, Leonetti MD, Pico AR, Hsiung Y, MacKinnon R (2010) Structure of the human BK channel Ca2+-activation apparatus at 3.0. A resolution. Science 329(5988):182–6. https://doi.org/10.1126/science.1190414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zingman LV, Alekseev AE, Hodgson-Zingman DM, Terzic A, A (2007) ATP-sensitive potassium channels: metabolic sensing and cardioprotection. J Appl Physiol 103(5):1888–1893. https://doi.org/10.1152/japplphysiol.00747.2007

    Article  CAS  PubMed  Google Scholar 

  • Zorbas YG, Kakuris KK, Federenko YF, Deogenov VA (2009) Inability of healthy subjects to deposit potassium during hypokinesia and potassium supplementation. Clin Invest Med 32(1):E34-42. https://doi.org/10.25011/cim.v32i1.5085

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simeon P. Cairns.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Nicolas Place.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindinger, M.I., Cairns, S.P. Regulation of muscle potassium: exercise performance, fatigue and health implications. Eur J Appl Physiol 121, 721–748 (2021). https://doi.org/10.1007/s00421-020-04546-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-020-04546-8

Keywords

Navigation