Skip to main content
Log in

Molecular characterization and determination of the coding capacity of the genome of equine herpesvirus type 2 between the genome coordinates 0.235 and 0.258 (theEcoRI DNA fragment N; 4.2 kbp)

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The complete DNA nucleotide sequence of theEcoRI DNA fragment N (0.235 to 0.258 viral map units) of equine herpes virus type 2 (EHV-2) strain T400/3 was determined. This DNA fragment comprises 4237 bp with a base composition of 55.23% G+C and 44.77% A+T. Nineteen open reading frames (ORFs) of 50-287 amino acid (aa) residues were detected. ORF number 10 is located between the nucleotide position 2220 and 2756 coding for a protein of 179 amino acid residues. This protein shows significant homology to the cytokine synthesis inhibitory factor (CSIF; interleukin 10) of human (76.4%) and mouse (68.5%), and to the Epstein-Barr virus (EBV) protein BCRF1 (70.6%). The existence of an interleukin 10 (IL-10) analogous gene within the genome of the EHV-2 was confirmed by screening the genome of nine EHV-2 strains using specific oligonucleotide primers corresponding to the 5′ and 3′ region of this particular gene by polymerase chain reaction. In all experiments an 870 bp DNA product was amplified. The specifity of the amplified DNA fragments obtained from individual EHV-2 strains was confirmed by DNA-DNA hybridization experiments. The DNA sequence analysis of the amplified DNA products of the EHV-2 strain LK was carried out. This analysis revealed the identity of the corresponding IL-10 gene (540 bp) of this strain to the IL-10 gene of EHV-2 strain T400/3. The presented data indicate that the EHV-2 genome harbors a viral interleukin 10-like gene. This is further evidence that the IL-10 gene can be present in the genomes of members of the Herpesviridae family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Browning G.T. and Studdert M.J., J Clin Microbiol25 13–16, 1987.

    Google Scholar 

  2. Harden T.J., Bagust T.J., Pascoe R.R., and Spradbrow P.B., Aust Vet J50 483–488, 1974.

    Google Scholar 

  3. Turner A.J., Studdert M.J., and Peterson J.E., Aust Vet J46 90–98, 1970.

    Google Scholar 

  4. Kemeny L. and Pearson J.E., Can J Comp Med34 59–65, 1970.

    Google Scholar 

  5. Roeder P.L. and Scott G.R., Vet Rec95 404–405, 1975.

    Google Scholar 

  6. Blakeslee J.R., Olsen R.G. Jr., McAllister E.S., Fasabender J., and Dennis R., Can J Microbiol21 1940–1946, 1975.

    Google Scholar 

  7. Gleeson L.J. and Studdert M.J., Aust Vet J53 360–362, 1977.

    Google Scholar 

  8. Gooding L.R., Cell71 5–7, 1992.

    Google Scholar 

  9. Harris S.L., Frank I., Yee A., Cohen G.H., Eisenberg R.J., and Friedman H.M., J Infect Dis162 331–337, 1990.

    Google Scholar 

  10. McNearney T.A., Odell C., Holers V.M., Spear P.G., and Atkinson J.P., J Exp Med166 1525–1535, 1987.

    Google Scholar 

  11. Bell S., Cranage M., Borysiewicz L., and Minson T., J Virol64 2181–2186, 1990.

    Google Scholar 

  12. Smith G.L., J Gen Virol74 1725–1740, 1993.

    Google Scholar 

  13. Rode H.J., Janssen W., Rösen-Wolff A., Bugert J.J., Thein P., Becker Y., and Darai G., Virus Genes7 11–116, 1993.

    Google Scholar 

  14. Suda T., O'Garra A., MacNeil I., Fischer M., and Zlotnik A., Cell Immunol129 228, 1990.

    Google Scholar 

  15. Fernandez-Botran R., Sanders V.M., Mosmann T.R., and Vitetta E.S., J Exp Med168 543–558, 1988.

    Google Scholar 

  16. Gajewski T.F. and Fitch F.W., J Immunol140 4245–4252, 1988.

    Google Scholar 

  17. Horowitz J.B., Kaye J., Conrad P.J., Katy M.E., and Janeway C.A., Proc Natl Acad Sci USA83 1886–1890. 1986.

    Google Scholar 

  18. Vieira P., de Waal-Malefyt R., Dang M.-N., Johnson K.E., Kastelein R., Fiorentino D.F., de Vries J.E., Roncarolo M.-G., Mosmann T.R., and Moore K.W., Proc Natl Acad Sci USA88 1172–1176, 1991.

    Google Scholar 

  19. Moore K.W., Vieria P., Fiorentino D.F., Mary L.T., Khan T.A., and Mosmann T.R., Science248 1230–1234, 1990.

    Google Scholar 

  20. Bear R., Bankier A.T., Biggin M.D., Deiniger P.L., Farrell P.J., Gibson T.J., Hatfull G., Hudson G.S., Satchwell S., Seguin C., Tuffnell P.S., and Barrel B.G., Nature310 207–211, 1984.

    Google Scholar 

  21. Hsu D.H., de Waal-Malefyt R., Fiorentino D.F., Dang M.N., Vieira P., de Vries J., Spits H., Mosmann T.R., and Moore K.W., Science250 830–832, 1990.

    Google Scholar 

  22. Darai G, Patent-Bayer AG, Le A 28 181—Foreign countries.

  23. Darai G., Matz B., Schröder C.H., Flügel R.M., Berger U., Munk K., and Gelderblom H., J Gen Virol43 541–551, 1979.

    Google Scholar 

  24. Darai G., Delius H., Clarke J., Apfel H., Schnitzler P., and Flügel R.M., Virology146 292–301, 1985.

    Google Scholar 

  25. Southern E.M., J Mol Biol98 503–517, 1975.

    Google Scholar 

  26. Rigby P.W.J., Dieckman M., Rhodes C., and Berg P., J Mol Biol114 237–256, 1977.

    Google Scholar 

  27. Sanger F., Nicklen S. and Coulson A.R., Proc Natl Acad Sci USA74 5463–5467, 1977.

    Google Scholar 

  28. Sanger F. and Coulson A.R., FEBS Lett87 107–110, 1978.

    Google Scholar 

  29. Vieira J. and Messing J., Gene19 259–268, 1982.

    Google Scholar 

  30. Tabor S. and Richardson C.C., Proc Natl Acad Sci USA,74 4767–4771, 1987.

    Google Scholar 

  31. Saiki R.K., Gelfand D.H., Stoffel S., Scharf S.J., Higuchi R., Horn G.T., Mullis, G., and Erlich H.A., Science23 487–492, 1988.

    Google Scholar 

  32. Hopp T.P. and Woods K.R., Proc Natl Acad Sci USA78 3824–3828, 1981.

    Google Scholar 

  33. Bairoch, A., Nucleic Acids Res19 2241–2245, 1991.

    Google Scholar 

  34. Wilbur W.J. and Lipman D.J., Proc Natl Acad Sci USA80 726–730, 1983.

    Google Scholar 

  35. Myers E.W. and Miller W., Comp Appl Biosci4 11–17, 1988.

    Google Scholar 

  36. Higgins D.G. and Sharp P.M., Comp Appl Biosci5 151–153, 1989.

    Google Scholar 

  37. Pickup D.J., Bastia D., Stone H.O., and Joklik W.K., Proc Natl Acad Sci USA79 7112–7116, 1982.

    Google Scholar 

  38. Hadasch R., Bugert J.J., Janssen W., and Darai G., Intervirology36 32–43, 1993.

    Google Scholar 

  39. Fischer M., Delius H., and Darai G., Virology167 485–496, 1988.

    Google Scholar 

  40. Fischer M., Schnitzler P., Scholz J., Rösen-Wolff A., Delius H., and Darai G., Virology167 497–506, 1988.

    Google Scholar 

  41. Schnitzler P. and Darai G., Virology172 32–41, 1989.

    Google Scholar 

  42. Schnitzler P., Hug M., Handermann M., Janssen W., Koonin E.V., Delius H., and Darai G., NAR22 158–166, 1994.

    Google Scholar 

  43. Guarino L.A., Gonzalez M.A., and Summers M.D., J Virol60 224–229, 1986.

    Google Scholar 

  44. Chen D.D., Nesson M.H., Rohrmann G.F., and Beaudreau G.S., J Gen Virol69 1375–1381, 1988.

    Google Scholar 

  45. Arif B.M. and Doerfler W., EMBO J3 525–529, 1984.

    Google Scholar 

  46. Browning G.T. and Studdert M.J., Arch Virol104 77–86, 1989.

    Google Scholar 

  47. Colacino J.M., Flowers C.C., Menna J., O'Callaghan D.J., and Staczek J., Virology173 566–580, 1989.

    Google Scholar 

  48. Gosselin J., Menezes J., Mercier G., Lamoureux G., and Oth D., Cell Immunol122 440–449, 1989.

    Google Scholar 

  49. de Waal Malefyt R., Haanen J., Spits H., Roncarolo M.-G., te Velde A., Figdor C., Johnson K., Kastelein R., Yssel H., and de Vires J.E., J Exp Med174 915–924, 1991.

    Google Scholar 

  50. Smith G.L., and Chan Y.S., J Gen Virol72 511–518, 1991.

    Google Scholar 

  51. Howard S.T., Chan Y.S., and Smith G.L., Virology180 633–647, 1991.

    Google Scholar 

  52. Upton C., Mossman K., and McFadden G., Science258 1369–1372, 1992.

    Google Scholar 

  53. Spriggs M.K., Hruby D.E., Maliszewski C.R., Pickup D.J., Sims J.E., Buller R.M.L., and VanSlyke J., Cell71 145–152, 1992.

    Google Scholar 

  54. Ray C.A., Black R.A., Kronheim S.R., Greenstreet T.A., Sleath P.R., Salvesen G.S., and Pickup D.J., Cell69 597–604, 1992.

    Google Scholar 

  55. Telford, E.A.R., Studdert, M.J., Agius, C.T., Watson, M.S., Aird, H.C., and Davison, A.J., IXth International Congress of Virology. Abstract Book, abstract no. W12-5, p. 32, 1993.

  56. Plummer G. and Waterson A.P., Virology19 412–415, 1963.

    Google Scholar 

  57. Hudson G.S., Gibson T.J., and Barell B.G., Virology147 99–109, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rode, HJ., Bugert, J.J., Handermann, M. et al. Molecular characterization and determination of the coding capacity of the genome of equine herpesvirus type 2 between the genome coordinates 0.235 and 0.258 (theEcoRI DNA fragment N; 4.2 kbp). Virus Genes 9, 61–75 (1994). https://doi.org/10.1007/BF01703436

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01703436

Key words

Navigation