Skip to main content
Log in

Noncoding control region of naturally occurring BK virus variants: Sequence comparison and functional analysis

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The human polyomavirus BK (BKV) has a proven oncogenic potential, but its contribution to tumorigenesis under natural conditions remains undetermined. As for other primate polyomaviruses, the approximately 5.2 kbp double-stranded circular genome of BKV has three functional regions: the coding regions for the two early (T, t antigens) and four late (agno, capsid proteins; VP1-3) genes separated by a noncoding control region (NCCR). The NCCR contains the origin of replication as well as a promoter/enhancer with a mosaic ofcis-acting elements involved in the regulation of both early and late transcription. Since the original isolation of BKV in 1971, a number of other strains have been identified. Most strains reveal a strong sequence conservation in the protein coding regions of the genome, while the NCCR exhibits considerable variation between different BKV isolates. This variation is due to deletions, duplications, and rearrangements of a basic set of sequence blocks. Comparative studies have proven that the anatomy of the NCCR may determine the transcriptional activities governed by the promoter/enhancer, the host cell tropism and permissivity, as well as the oncogenic potential of a given BKV strain. In most cases, however, the NCCR sequence of new isolates was determined after the virus had been passaged several times in more or less arbitrarily chosen cell cultures, a process known to predispose for NCCR rearrangements. Following the development of the polymerase chain reaction (PCR), it has become feasible to obtain naturally occurring BKV NCCRs, and their sequences, in samples taken directly from infected human individuals. Hence, the biological significance of BKV NCCR variation may be studied without prior propagation of the virus in cell culture. Such variation has general interest, because the BKV NCCRs represent typical mammalian promoter/enhancers, with a large number of binding motifs for cellular transacting factors, which can be conveniently handled for experimental purposes. This communication reviews the naturally occurring BKV NCCR variants, isolated and sequenced directly from human samples, that have been reported so far. The sequences of the different NCCRs are compared and analyzed for the presence of proven and putative cellular transcription factor binding sites. Differences in biological properties between BKV variants are discussed in light of their aberrant NCCR anatomies and the potentially modifying influence of transacting factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yoshiike K. and Takemoto K.K. in Salzman N.P. (ed).The Papovaviridae, Vol. 1, The Polyomaviruses. Plenum, New York, 1986, pp. 295–326.

    Google Scholar 

  2. Carbone M., Pass H.I., Rizzo, P., Marinetti M., Di Muzio M., Mew D.J.Y., Levine A.S., and Procopio A., Oncogene9 1781–1790, 1994.

    Google Scholar 

  3. Salzman N.P.,The Papovaviridae, Vol. 1, The Polyomaviruses. Plenum, New York, 1986.

    Google Scholar 

  4. Sugimoto C., Hara K., Taguchi F., and Yogo Y., J Mol Evol31 485–492, 1990.

    Google Scholar 

  5. Jin L., Gibson P.E., Booth J.C., and Clewley J.P., J Med Virol41 11–17, 1993.

    Google Scholar 

  6. Deyerle K.L. and Subramani S., J Virol62 3378–3387, 1988.

    Google Scholar 

  7. Cassil J.A., and Subramani S., Virology166 175–185, 1989.

    Google Scholar 

  8. Deyerle K.L., Cassil J.A., and Subramani S., Virology158 181–193, 1987.

    Google Scholar 

  9. Grinnell B.W., Berg D.T., and Walls J.D., Mol Cell Biol8 3448–3457, 1988.

    Google Scholar 

  10. Markowitz R.-B. and Dynan, W.S., J Virol62 3388–3398, 1988.

    Google Scholar 

  11. Cassil J.A., Deyerle K.L., and Subramani S., Virology169 172–181, 1989.

    Google Scholar 

  12. Chakraborty T. and Das G.C., Mol Cell Biol9 3821–3828, 1989.

    Google Scholar 

  13. Chakraborty T. and Das G.C., J Gen Virol72 1935–1942, 1991.

    Google Scholar 

  14. Nakshatri H., Pater M., and Pater A., Virology183 374–380, 1991.

    Google Scholar 

  15. Ferguson A.T. and Subramani S., J Virol68 4274–4286, 1994.

    Google Scholar 

  16. Sugimoto C., Hara K., Taguchi F., and Yogo Y., J Virol63 3195–3199, 1989.

    Google Scholar 

  17. Dörries K., Vogel E., Günter S., and Czub S., Virology198 59–70, 1994.

    Google Scholar 

  18. Sundsfjord A., Spein A.R., Lucht E., Flægstad T., Seternes O.M., and Traavik T., J Clin Microbiol32 1390–1394, 1994.

    Google Scholar 

  19. Sundsfjord A., Flægstad T., Flø R., Spein A.R., Pedersen M., Permin H., Julsrud J., and Traavik, T., J Infect Dis169 485–490, 1994.

    Google Scholar 

  20. Sundsfjord A., Johansen T., Flægstad T., Moens U., Villand P., Subramani S., and Traavik T., J Virol64 3864–3871, 1990.

    Google Scholar 

  21. Flægstad T., Sundsfjord A., Arthur R.R., Pedersen M., Traavik T., and Subramani S., Virology180 553–560, 1991.

    Google Scholar 

  22. Rubinstein R., Pare N., and Harley E.H., J Virol61 1747–1750, 1987.

    Google Scholar 

  23. Negrini M., Sabbioni S., Arthur R.R., Castagnoli A., and Barbanti-Brodano G., J Virol65 5092–5095, 1991.

    Google Scholar 

  24. Markowitz R-.B., Eaton B.A., Kubik M.F., Latorra D., McGregor A., and Dynan W.S., J Virol65 4515–4519, 1991.

    Google Scholar 

  25. ter Schegget J., Sol C.J.A., Baan E.W., and van der Noordaa J., J Virol53 302–305, 1985.

    Google Scholar 

  26. Tavis J.E., Walker D.L., Gardner S.D., and Frisque R.J., J Virol63 901–911, 1989.

    Google Scholar 

  27. Pater A., Pater M.M., Chang L.-S., Slawin K., and Di Mayorca G., Virology131 426–436, 1983.

    Google Scholar 

  28. Tavis J.E., Frisque J.R., Walker D.L., and White F.A. III, Virology178 568–572, 1990.

    Google Scholar 

  29. Moens U., Sundsfjord A., Flægstad T., and Traavik, T., J Gen Virol71 1461–1471, 1990.

    Google Scholar 

  30. Yang R.C.A. and Wu R., Science206 456–462, 1979.

    Google Scholar 

  31. Watanabe S. and Yoshiike K., J Virol59 260–266, 1986.

    Google Scholar 

  32. Negrini M., Rimessi P., Mantovani C., Sabbioni S., Corallini A., Gerosa M.A., and Barbanti-Brodano G., J Gen Virol71 2731–2736, 1990.

    Google Scholar 

  33. Nowock J., Borgmeyer U., Puschel A.W., Rupp R.A.W., and Sippel A.E., Nucleic Acids Res13 2045–2061, 1985.

    Google Scholar 

  34. Moens U., Subramaniam N., Johansen B., Johansen T., and Traavik, T., J Virol68 2398–2408, 1994.

    Google Scholar 

  35. Ghosh D., Nucleic Acids Res18 1749–1756, 1990.

    Google Scholar 

  36. Dailey L., Hanly S.M., Roeder R.G., and Heintz N., Proc Natl Acad Sci USA83 7241–7245, 1986.

    Google Scholar 

  37. Ray A., LaForge S., and Sehgal P.B., Mol Cell Biol10 5736–5746, 1990.

    Google Scholar 

  38. Nimer S.D., Morita E.A., Martis M.J., Wachsman W., and Gasson J.C., Mol Cell Biol8 1979–1984, 1988.

    Google Scholar 

  39. Spanopoulou E., Giguere V., and Grosveld F., Mol Cell Biol11 2216–2228, 1991.

    Google Scholar 

  40. Dilworth S.M., Cowie A., Kamen R.I., and Griffin B.E., Proc Natl Acad Sci USA81 1941–1945, 1984.

    Google Scholar 

  41. Karsenty G., Golumber P., and de Crombrugghe B., J Biol Chem263 13909–13915, 1988.

    Google Scholar 

  42. Hirsch M.-R., Gaubler L., Deagostini-Bazin H., Bally-Cuif L., and Goridis C., Mol Cell Biol10 1959–1968, 1990.

    Google Scholar 

  43. Tsai S.-F., Strauss E., and Orkin S.H., Genes Dev5 919–931, 1991.

    Google Scholar 

  44. Gumucio D.L., Rood K.L., Gray T.A., Riordan M.F., Sartor C.I., and Collins F.S., Mol Cell Biol8 5310–5322, 1988.

    Google Scholar 

  45. McDonagh K.T., Lin H.J., Lowrey C.H., Bodine D.M., and Nienhuis A.W., J Biol Chem266 11965–11974, 1991.

    Google Scholar 

  46. Piette J. and Yaniv M., Nucleic Acids Res14 9595–9611, 1986.

    Google Scholar 

  47. Boyer T.G., and Maquat L.E., J Biol Chem265 20524–20532, 1990.

    Google Scholar 

  48. Drouin J., Trifiro M.A., Plante R.K., Nemer M., Eriksson P., and Wrange Ö., Mol Cell Biol9 5305–5314, 1989.

    Google Scholar 

  49. Brunvand M.W., Schmidt A., and Siebenlist U., J Biol Chem263 18904–18910, 1988.

    Google Scholar 

  50. Cordingley M.B. and Hager G.L., Nucleic Acids Res16 609–628, 1988.

    Google Scholar 

  51. Markose E.R., Stein J.L., Stein G.S., and Lian J.B., Proc Natl Acad Sci USA87 1701–1705, 1990.

    Google Scholar 

  52. Maldonado E., Ha I., Cortes P., Weis L., and Reinberg D., Mol Cell Biol10 6335–6347, 1990.

    Google Scholar 

  53. Inostroza J.A., Mermelstein F.H., Ha I., Lane W.S., and Reinberg D., Cell70 477–489, 1992.

    Google Scholar 

  54. Ohkuma Y., Horikoshi M., Roeder R.G., and Desplan C., Proc Natl Acad Sci USA87 2289–2293, 1990.

    Google Scholar 

  55. Nakajima N., Horikoshi M., and Roeder R.G., Mol Cell Biol8 4028–4040, 1988.

    Google Scholar 

  56. Philippe J., Drucker D.J., Knepel W., Jepeal L., Misulovin Z., and Habener J.F., Mol Cell Biol8 4877–4888, 1988.

    Google Scholar 

  57. Garcia J.A., Wu, F.K., Mitsuyasu R., and Gaynor R.B., EMBO J6 3761–3770, 1987.

    Google Scholar 

  58. Wu F.K., Garcia J.A., Harrich D., and Gaynor R.B., EMBO J7 2117–2129, 1988.

    Google Scholar 

  59. Anderson G.M. and Freytag S.O., Mol Cell Biol11 1935–1943, 1991.

    Google Scholar 

  60. Martin J.D., King D.M., Slauch J.M., and Frisque R.J., J Virol53 306–311, 1985.

    Google Scholar 

  61. Gronostajski R.M., Nucleic Acids Res15 5545, 1987.

    Google Scholar 

  62. Van der Hoorn F., J Mol Biol193 255–266, 1987.

    Google Scholar 

  63. Cousin E., Medcalf R.L., Bergonzelli G.E., and Kruithof E.K.O., Nucleic Acids Res19 3881–3886, 1991.

    Google Scholar 

  64. Martin M.E., Piette J., Yaniv M., Tang W., and Folk W.R., Proc Natl Acad Sci USA85 5839–5843, 1988.

    Google Scholar 

  65. Ghazal P., Lubon H., Fleckenstein B., and Henninghausen L., Proc Natl Acad Sci USA84 3658–3662, 1987.

    Google Scholar 

  66. Ammendola R., Gounari F., Piaggio G., de Simone V., and Cortese R., Mol Cell Biol10 387–390, 1990.

    Google Scholar 

  67. von der Ahe D., Pearson D., Nakagawa J.I., Rajput B., and Nagami Y., Nucleic Acids Res16 7527, 1988.

    Google Scholar 

  68. DeLucia A.L., Lewton B.A., Tjian R., and Tegtmeyer P., J Virol46 143–150, 1983.

    Google Scholar 

  69. Mitchell P.J., Wang C., and Tjian R., Cell50 847–861, 1987.

    Google Scholar 

  70. Paonessa G., Gounari F., Frank R., and Cortese R., EMBO J7 3115–3123, 1988.

    Google Scholar 

  71. Stanley E., Metcalf D., Sobieszczuk P., Gough N.M., and Dunn A.R., EMBO J4 2569–2573, 1985.

    Google Scholar 

  72. Leonardo M.C. and Baltimore D., Cell58 227–229, 1989.

    Google Scholar 

  73. Dilworth S.M., Cowie A., Kamen R.I., and Griffin B.E., Proc Natl Acad Sci USA81 1941–1945, 1984.

    Google Scholar 

  74. Shannon M.F., Gamble J.R., and Vadas M.A., Proc Natl Acad Sci USA85 674–678, 1988.

    Google Scholar 

  75. Wu B.J., Williams G.T., and Morimoto R.I., Proc Natl Acad Sci USA84 2203–2207, 1987.

    Google Scholar 

  76. Kim H.C., Heath C., Bertuch A., and Hansen U., Proc Natl Acad Sci USA84 6025–6029, 1987.

    Google Scholar 

  77. Jones K.A. and Tjian R., Nature317 179–182, 1985.

    Google Scholar 

  78. Vos J.C., Sasker M., and Stunnenberg H.G., EMBO J10 2553–2558, 1991.

    Google Scholar 

  79. Zhang Z.-X., Kumar V., Rivera R.T., Chisholm J., and Biswas D.K., J Biol Chem265 4785–4788, 1990.

    Google Scholar 

  80. Peers B., Voz M.L., Monget P., Mathy-Hartert M., Berwaer M., Belayew A., and Martial J.A., Mol Cell Biol10 4690–4700, 1990.

    Google Scholar 

  81. van Wijnen A.J., Wright K.L., Massung R.F., Gerretsen M., Stein J.L., and Stein G.S., Nucleic Acids Res16, 571–592.

  82. Moreau-Gachelin F., Biochim Biophys Acta1198 149–163, 1994.

    Google Scholar 

  83. Yoshida K., Narita M., and Fujinaga K., Nucleic Acids Res17 10015–10034, 1989.

    Google Scholar 

  84. Faisst S. and Meyer S., Nucleic Acids Res20 3–26, 1992.

    Google Scholar 

  85. Ohlsson H. and Edlund T., Cell45 35–44, 1986.

    Google Scholar 

  86. Shirayoshi Y., Burke P., Appella E., and Ozato K., Proc Natl Acad Sci USA85 5884–5888, 1988.

    Google Scholar 

  87. Weiher H., Köning M., and Gruss P., Science219 626–631, 1983.

    Google Scholar 

  88. Kern S.E., Kinzler, K.W., Bruskin A., Jarosz D., Friedman P., Prives C., and Vogelstein B., Science252 1708–1711, 1991.

    Google Scholar 

  89. Chan G.C.-K., Hess P., Meenakshi T., Carlstedt-Duke J., Gustafsson J.-Å., and Payvar F., J Biol Chem266 22634–22644, 1991.

    Google Scholar 

  90. Davidson I., Fromental C., Augereau P., Wildeman A., Zenke M., and Chambon P., Nature323 544–548, 1986.

    Google Scholar 

  91. Hara K., Oya Y., Konoshita A., Taguchi F., and Yogo, Y., J Gen Virol67 2555–2559, 1986.

    Google Scholar 

  92. Wasylyk C., Flores P., Gutman A., and Wasylyk B., EMBO J8 3371–3378, 1989.

    Google Scholar 

  93. Seth A., Ascione R., Fisher J., Mavrothalassitis G.J., Bhat N.K., and Papas T.S., Cell Growth Differ3 327–334, 1992.

    Google Scholar 

  94. Traavik T., Uhlin-Hansen L., Flægstad T., and Christie K.E., J Med Virol24 283–297, 1988.

    Google Scholar 

  95. Monté D., Baert J.-L., Defossez P.-Z., de Launoit Y., and Stéhelin D., Oncogene9 1397–1406, 1994.

    Google Scholar 

  96. Imagawa M., Chiu R., and Karin M., Cell51 251–260, 1987.

    Google Scholar 

  97. Grimm S. and Bauerle P.A., Biochem. J290 297–308, 1993.

    Google Scholar 

  98. Mew R.T., Lecatsas G., Prozesky O.W., and Harley E.H., Intervirology16 14–19, 1981.

    Google Scholar 

  99. Taguchi F., Hara K., Kajioka J., and Nagaki D., Microbiol Immunol23 1131–1132, 1979.

    Google Scholar 

  100. Seif I., Khoury G., and Dhar R., Cell18 963–977, 1979.

    Google Scholar 

  101. Markowitz R-.B., Tolbert S., and Dynan W.S., J Virol64 2411–2415, 1990.

    Google Scholar 

  102. Rosenthal N., Kress M., Gruss P., and Khoury G., Science222 749–755, 1983.

    Google Scholar 

  103. Villand P., Moens U., Johansen T., Winther B., and Traavik, T., NIPH Annals13 31, 1990.

    Google Scholar 

  104. Haukland H.H., Vonen B., and Traavik T., Int J Cancer51 79–83, 1992.

    Google Scholar 

  105. Watanabe S., Soeda E., Uchida S., and Yoshiike K., J Virol51 1–6, 1984.

    Google Scholar 

  106. Watanabe S. and Yoshiike K. J Virol55 823–825, 1985.

    Google Scholar 

  107. Watanabe S. and Yoshiike K., Virology169 204–212, 1989.

    Google Scholar 

  108. Rubinstein R., Schoonakker B.C.A., and Harley E.H., J Virol65 1600–1604, 1991.

    Google Scholar 

  109. Vallbracht A., Löhler J., Grossman J., Glück T., Petersen D., Gerth H-.J., Genic M., and Dörries K., Am J Pathol143 29–39, 1993.

    Google Scholar 

  110. De Mattei M., Martini F., Tognon M., Serra M., Baldini N., and Barbanti-Brodano G., J Infect Dis169 1175, 1994.

    Google Scholar 

  111. Knowles W.A., Gibson P.E., and Gardner S.D., J Med Virol28 118–123, 1989.

    Google Scholar 

  112. Johnsen J.I., Seternes O.M., Johansen T., Moens U., Māntejārvi M., and Traavik T., J Gen Virol76 1571–1581, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moens, U., Johansen, T., Johnsen, J.I. et al. Noncoding control region of naturally occurring BK virus variants: Sequence comparison and functional analysis. Virus Genes 10, 261–275 (1995). https://doi.org/10.1007/BF01701816

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01701816

Key Words

Navigation