Skip to main content
Log in

Immediate metabolic effects of different nutritional regimens in critically ill medical patients

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

Metabolic effects of different caloric regimens were investigated in nonsurgical, medical patients with multipleorgan failure (MOF).

Design

Seven total parenteral nutrition (TPN) regimens were administered, differing in amount (14, 28, and 56 kcal/kg per day, i.e., hypo-, iso-, and hypercaloric nutrition, respectively) and distribution [carbohydrates (COH), amino acids (AA), long-chain and mediumchain triglycerides (LCT/MCT)] of calories. Each regimen was administered over 12 h. Metabolism was monitored by energy expenditure (EE), body temperature (BT), protein breakdown (PB), and blood glucose and serum lactate levels. Measurements were started within 2 days of MOF onset.

Setting

The study was conducted in a medical intensive care unit.Patients: Twenty patients with MOF on mechanical ventilation (mean Apache II score\(\bar x\)=26) were investigated.

Measurements and results

The mean values of the EE (\(\bar x\)=31 kcal/kg per day), BT (\(\bar x\)-38°C), PB (\(\bar x\)=1.5 g/kg per day), and lactate (\(\bar x\)=2.0 mmol/l) and glucose level (\(\bar x\)=222 mg/dl) parameters were elevated. EE, BT, and lactate and glucose levels were significantly lower under hypocaloric nutrition than during iso- and hypercaloric nutrition (p<0.01). Differences in the metabilic effects of LCT and MCT were not significant. PB was significantly elevated under hypercaloric nutrition (p<0.01). Protein balance was positive under hypercaloric nutrition, and negative under iso- and hypocaloric nutrition.

Conclusions

In nonsurgical, medical patients neither hypercaloric nor isocaloric nutritional support prevented protein catabolism; in contrast, they enhanced the metabolic burden measured by EE, thermogenesis, urea production rate, and glucose and lactate levels. A hypocaloric regimen is therefore recommended for these patients during the early phase of MOF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Veterans Affairs Total Parenteral Nutrition Cooperative Study Group (1991) Perioperative total parenteral nutrition in surgical patients. N Engl J Med 325:525–532

    Google Scholar 

  2. Detsky AS, Baker JP, O'Rourke K, Goel V (1987) Perioperative parenteral nutrition: a meta-analysis. Ann Intern Med 107:195–203

    PubMed  Google Scholar 

  3. Shenkin A (1979) Monitoring the nutritional status of critically ill patients. Intensive Care Med 5:165–176

    PubMed  Google Scholar 

  4. Wilmore DW (1991) Catabolic illness. Strategies for enhancing recovery. N Engl J Med 10:695–702

    Google Scholar 

  5. Kopple JD (1988) Nutrition, diet, and the kidney. In: Shils ME, Young VR (eds) Modern nutrition in health and disease. Lea & Febiger, Philadelphia, pp 1230–1268

    Google Scholar 

  6. Lee HA, Talbot ST (1990) Nutrition in acute renal failure management. In: Rainford D, Sweny P (eds) Acute renal failure. Farrand Press, London, pp 245–255

    Google Scholar 

  7. Weilemann LS, Bässler KH (1988) Künstliche Ernährung. In: Schuster HP, Schölmerich P, Schönborn H, Baum PP (eds) Intensivmedizin. Thieme, Stuttgart, pp 79–103

    Google Scholar 

  8. Schuster HP (1989) Ernährung bei akutem Nierenversagen. Intensiv Notfallmed 26:218–222

    Google Scholar 

  9. Knaus WA, Draper EA, Wagner DP, Zimmermann JE (1985) Prognosis in acute organ-system failure. Ann Surg 209:685–693

    Google Scholar 

  10. Behrendt W (1986) Planung und Durchführung einer parenteralen Ernährungstherapie. In: Melichar G, Kalff G, Müller FG (eds) Beitr Intensiv-Notfallmed, vol 4. Karger, Basel, pp 164–171

    Google Scholar 

  11. Olesen K, Heilskov NCS, Schönheider F (1954) The excretion of N-15 in urine after administration of N-15-glycine. Biochim Biophys Acta 15:95–119

    PubMed  Google Scholar 

  12. Schmitz JE, Lotz P, Kilian J, Grünert A, Ahnefeld FW (1984) Untersuchungen zum Energieumsatz und zur Energieversorgung beatmeter Intensivpatienten. Infusionstherapie 11:100–108

    Google Scholar 

  13. Schlichtig R, Ayres SM (1988) Nutritional support of the critically ill. Year Book Medical Publishers, Chicago London Boca Raton, pp 75–95

    Google Scholar 

  14. Behrendt W, Weiland C, Kalff J, Giani G (1987) Continuous measurement of oxygen uptake. Evaluation of the Engström metabolic computer and clinical experiences. Acta Anaesthesiol Scand 31:10–14

    PubMed  Google Scholar 

  15. Bredbacka S, Kawachi S, Norlander O, Kirk B (1984) Gas exchange during ventilator treatment: a validation of a computerized technique and its comparison with the Douglas bag method. Acta Anaesthesiol Scand 28:462–468

    PubMed  Google Scholar 

  16. Kinney JM, Morgan AP, Domingues FJ, Gildner KJ (1964) A method for continuous measurement of gas exchange and expired radioactivity in acutely ill patients. Metabolism 13: 205–218

    PubMed  Google Scholar 

  17. Kinney JM, Long CL, Gump FE, Duke JA (1968) Tissue composition of weight loss in surgical patients. Elective operation. Ann Surg 168:459–467

    PubMed  Google Scholar 

  18. Kinney JM, Duke JA, Long CL, Gump FE (1970) Tissue fuel and weight loss after injury. J Clin Pathol 23:65–78

    PubMed  Google Scholar 

  19. Long CL, Schaffel N, Geiger JW, Schiller WR, Blakemore WS (1979) Metabolic response to injury and illness. Estimation of energy and protein needs from indirect calorimetry and nitrogen balance. JPEN J Parenter Enteral Nutr 3:452–456

    PubMed  Google Scholar 

  20. Lange H, Seybold D, Strohmeyer G (1971) Eiweißkatabolismus und Freisetzung von Zellwasser bei akutem Nierenversagen. Dtsch Med Wochenschr 14: 585–587

    Google Scholar 

  21. Askanazi J, Carpentier YA, Jeevanandam M (1979) Nitrogen balance, catecholamine excretion and energy expenditure following injury: effects of diet and inactivity (abstract). JPEN J Parenter Enteral Nutr 3:21

    Google Scholar 

  22. Askanazi J, Carpentier JA, Elwyn DH, Nordenström J, Jeevanandam M, Rosenbaum SH, Gump FE, Kinney JM (1980) Influence of total parenteral nutrition on fuel utilisation in injury and sepsis. Ann Surg 191:40–46

    PubMed  Google Scholar 

  23. Askanazi J, Rosenbaum SH, Hymen AI, Silverberg PA, Milic-Emili J, Kinney JM (1980) Respiratory changes induced by large glucose loads of total parenteral nutrition. JAMA 1243:1444–1447

    Google Scholar 

  24. Van den Berg B, Stam H (1988) Metabolic and respiratory effects of enteral nutrition in patients during mechanical ventilation. Intensive Care Med 14:206–211

    PubMed  Google Scholar 

  25. Aprili Z, Hauser R, Norlindh T, Kahnemouyi H (1987) Fettleber unter indirekt kalorimetrisch gesteuerter totaler parenteraler Ernährung. Infusionstherapie 14:239–244

    Google Scholar 

  26. Burke J, Wolfe R, Mullany C, Mathews D, Bier D (1979) Glucose requirements following burn injury. Ann Surg 190:274–283

    PubMed  Google Scholar 

  27. Grünert A (1983) Erfahrungen mit der Applikation von Fettemulsionen bei postoperativen und posttraumatischen Zuständen. Infusionstherapie 10:144–155

    Google Scholar 

  28. Wolfe RR, Goodenough RD, Burke JF, Wolfe MH (1983) Response of protein and urea kinetics in burn patients to different levels of protein intake. Ann Surg 197:163–171

    PubMed  Google Scholar 

  29. Rhodes JM, Carrol A, Dawson J (1985) A controlled trial of fixed versus tailored caloric intake in patients receiving intravenous feeding after abdominal surgery. Am J Clin Nutr 4:169–178

    Google Scholar 

  30. Singer P, Irving CS, Elwyn DH (1989) The reliability of estimated energy expenditure in critically ill patients. In: Bursztein S, Elwyn DH, Askanazi J, Kinney JM (eds) Energy metabolism, indirect calorimetry and nutrition. William & Wilkins, Baltimore, Hong Kong London Sydney, pp 238–242

    Google Scholar 

  31. Bürger U, Schleußner E, Madu B (1982) Untersuchungen über die Verwertung parenteral zugeführter Aminosäuren in der postoperativen Phase. Infusionstherapie 9:120–128

    Google Scholar 

  32. Müller A, Müller A, Lange H (1993) Osmotische Lücke unter parenteraler Ernährung internistischer Intensivpatienten (abstract). Med Klin 88:72

    PubMed  Google Scholar 

  33. Crowe PJ, Dennison AR, Kettlewell M, Royle GT (1985) Comparison of the nitrogen sparring effect of MCT versus LCT lipid emulsions in patients undergoing abdominal surgery. In: Eckart W (ed) Fett in der parenteralen Ernährung vol 3. Basel, Karger, pp 187–196

    Google Scholar 

  34. Dennison AR, Crowe PJ, Ball M, Hands L, Kettlewell M (1985) Mediumchain triglycerides (MCT) during parenteral nutrition: levels of complement, albumin and prealbumin. In: Eckart W (ed) Fett in der parenteralen Ernährung. Basel, Karger, pp 166–183

    Google Scholar 

  35. Löhlein D, Haessner J (1988) Einfluß MCT-haltiger Fettemulsionen auf den postoperativen Eiweißstoffwechsel. In: Bässler KH, Grünert A, Kleinberger G, Reissigl H (eds) Beiträge zur Infusionstherapie und klinischen Ernährung, vol 20. Basel, Karger, pp 156–164

    Google Scholar 

  36. Randle PJ, Hales CN, Garland PB, Newsholme EA (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbance of diabetes mellitus. Lancet I:785–789

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, T.F., Müller, A., Bachem, M.G. et al. Immediate metabolic effects of different nutritional regimens in critically ill medical patients. Intensive Care Med 21, 561–566 (1995). https://doi.org/10.1007/BF01700160

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01700160

Key words

Navigation