Skip to main content
Log in

Postaggressionsstoffwechsel nach Herzinfarkt — dargestellt am Verhalten kurzlebiger Plasmaproteine

Stress-metabolism after myocardial infarction — demonstrated by means of the behaviour of plasma proteins with short half-life

  • Originalien
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

The kinetics of plasma proteins with short half-life during stress-metabolism in patients after myocardial infarction with and without clinical complications and after angina pectoris were compared. The acute-phase proteins α1-antitrypsin, C-reactive protein (CRP), fibrinogen, haptoglobin, and the transport proteins prealbumin and transferrin were analyzed with the method of radial immunodiffusion.

Whereas angina pectoris doesn't influence the protein kinetics, one can recognize after myocardial infarction a continuous increase of the acute-phase proteins to maxima between the 3rd and 5th day after the attack. Parallel to these changes, the transport proteins decrease with subsequent increase.

The changes, which are similar to those seen after surgical trauma, are dependent on the severity of illness, and can be used as prognostic parameters.

During stress metabolism, the concentrations of the proteins depending on nutrition, prealbumin and transferrin, are modified by the type and severity of stress, and by nutritional influences. The mechanisms of these changes and the consequences for their use as diagnostic parameters are discussed.

Zusammenfassung

Die Kinetik kurzlebiger Plasmaproteine im Postaggressionssyndrom wurde vergleichend bei Patienten nach Herzinfarkt (HI) mit und ohne klinische Komplikationen und nach Angina Pectoris-Anfall (AP) am Beispiel der Akut-Phase-Proteine α1-Antitrypsin, C-reaktives Protein, Fibrinogen und Haptoglobin sowie der Transportproteine Präalbumin und Transferrin nach der Methode der radialen Immundiffusion untersucht. Während AP keinen Einfluß auf die Proteinkinetik ausübt, zeigen sich nach HI ein kontinuierlicher Anstieg der Akut-Phase-Proteine und ein dazu parallel verlaufender Abfall der Transportproteine mit Maximal- bzw. Minimal-Konzentrationen zwischen dem 3. und 5. Tag nach dem Ereignis und anschließender Rückbildung zu den Ausgangswerten. Die Veränderungen, die in ähnlicher Weise auch nach chirurgischen Traumata beobachtet werden, sind abhängig vom Schweregrad der Erkrankung und entsprechend prognostisch verwertbar.

Im Postaggressionssyndrom wird demnach das Verhalten der nahrungsabhängigen Proteine Präalbumin und Transferrin sowohl durch Art und Stärke des Streßeinflusses als auch durch den Ernährungszustand beeinflußt. Der Mechanismus dieser Veränderungen und die Konsequenzen für die Verwendung der Proteine als diagnostische Kenngrößen werden diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Agostini A, Vergani C, Stabilini R, Marasini B, Arcidiacono R, Sbaffi A, Binaghi PC (1970) Immunochemical quantitation of acute phase reactive proteins in myocardial infarction. Am Heart J 80:313–318

    PubMed  Google Scholar 

  2. Allison SP, Prowse K, Chamberlain MJ (1967) Failure of insulin response to glucose load during operation and after myocardial infarction. Lancet 1:478–481

    PubMed  Google Scholar 

  3. Allison SP, Chamberlain MJ, Hinton P (1969) Intravenous glucose tolerance, insulin, glucose, and free fatty acid levels after myocardial infarction. Br Med J 4:776–778

    PubMed  Google Scholar 

  4. Allison AC (ed) (1974) Structure and function of plasma proteins, Vol 1. Plenum Press, London New York

    Google Scholar 

  5. Allison AC (ed) (1976) Structure and function of plasma proteins, Vol 2. Plenum Press, London New York

    Google Scholar 

  6. Aronsen KF, Ekelund G, Kindmark CO, Laurell CB (1972) Sequential changes of plasma proteins after surgical trauma. Scand J Clin Lab Invest 29 [Suppl 124]:127–136

    Google Scholar 

  7. Bachmann GW, Weiss ME, Rapp W (1968) Differenzierte quantitative Serumeiweißbestimmungen im Ablauf des Herzinfarktes. Schweiz Med Wochenschr 98:1825–1829

    PubMed  Google Scholar 

  8. Bartels O, Bickel H, Junge O (1980) Zum Elektrolyt-und Hormonhaushalt bei Myokardinfarkt. In: Heberer G, Schultis K, Günther B (Hrsg) Postaggressionsstoffwechsel II. Schattauer-Verlag, Stuttgart New York, S 73–80

    Google Scholar 

  9. Beisel WR, Cockerell GL, Janssen WA (1977) Nutritional effects on the responsiveness of plasma acute-phase reactant glycoproteins. In: Suskind RM (ed) Malnutrition and the immune response. Raven Press, New York, S 395–402

    Google Scholar 

  10. Belfrage S (1963) Plasma protein pattern in course of acute infectious disease. Acta Med Scand 173 [Suppl 395]:82–85

    Google Scholar 

  11. Blackburn GL, Benotti PN, Bistrian BR, Bothe A, Maini BS, Schlamm HT, Smith MF (1979) Nutritional assessment and treatment of hospital malnutrition. Infusionstherapie 6:238–250

    Google Scholar 

  12. Bocci V (1970) Metabolism of plasma proteins. Arch Fisiol 67:314–444

    PubMed  Google Scholar 

  13. Chakrabarti R, Hocking ED, Fearnley GR (1969) Raction pattern to three stresses — electroplexy, surgery, and myocardial infarction — of fibrinolysis and plasma fibrinogen. J Clin Pathol 22:659–662

    PubMed  Google Scholar 

  14. Christensen NJ, Videbaek J (1974) Plasma catecholamines and carbohydrate metabolism in patients with acute myocardial infarction. J Clin Invest 54:278–286

    PubMed  Google Scholar 

  15. Crockson RA, Payne CJ, Ratcliff AP, Soothill JF (1966) Time sequence of acute phase reactive proteins following surgical trauma. Clin Chim Acta 14:435–441

    PubMed  Google Scholar 

  16. Darcy DA (1965) Respone of a serum glycoprotein to tissue injury and necrosis. II. The role of the liver, adrenal gland and other organs. Br J Exp Pathol 46:155–163

    PubMed  Google Scholar 

  17. Documenta Geigy. Wissenschaftliche Tabellen (1975) Durchschnitts-und Idealgewicht Erwachsener. Thieme-Verlag, Stuttgart (Redaktion Diem K, Lentner C, 7. Ausgabe, S 701)

  18. Eastham RD, Morgan EH (1963) Plasma-fibrinogen levels in coronary-artery disease. Lancet 2:1196–1197

    Google Scholar 

  19. Enenkel W, Nobis H (1980) Untersuchungen zum Energiestoffwechsel bei Myokardinfarkt. In: Heberer G, Schultis K, Günther B (Hrsg) Postaggressionsstoffwechsel II. Schattauer-Verlag, Stuttgart New York, S 33–38

    Google Scholar 

  20. Engler R (1979) Recent observations on plasma proteins found during inflammatory reactions. In: Peeters H, Wright PH (eds) Plasma protein pathology. Pergamon Press, Oxford New York Toronto Sydney Paris Frankfurt, S 13–21

    Google Scholar 

  21. Fateh-Moghadam A, Schwandt P, Sandel P, Vogt W, Kling S (1977) Einfluß totaler Nahrungskarenz auf Serumproteinkonzentrationen. Klin Wochenschr 55:525–531

    PubMed  Google Scholar 

  22. Fischer CL, Gill C, Forrester MG, Nakamura R (1976) Quantitation of “acute-phase proteins” postoperatively. Am J Clin Pathol 66:840–846

    PubMed  Google Scholar 

  23. Fulton RM, Duckett K (1976) Plasma-fibrinogen and thromboemboli after myocardial infarction. Lancet 2:1161–1164

    PubMed  Google Scholar 

  24. Gidron E, Margalit R, Oliven A, Shalitin Y (1977) Effect of myocardial infarction on components of fibrinolytic system. Br Heart J 39:19–24

    PubMed  Google Scholar 

  25. Gofferje H (1977a) Das Verhalten von Präalbumin, Retinolbindendem Protein und der Immunglobuline unter dreiwöchiger Ernährungsrehabilitation. Infusionstherapie 4:360–362

    Google Scholar 

  26. Gofferje H, Kozlik V (1977b) Proteinstatus bei kurzfristigem Fasten und bei Zufuhr essentieller Aminosäuren. Infusionstherapie 4:320–324

    Google Scholar 

  27. Gofferje H, Maintz E (1978) Das Verhalten von Präalbumin, Retinolbindendem Protein, Transferrin und Haptoglobin in der postoperativen und posttraumatischen Phase. Infusionstherapie 5:268–272

    Google Scholar 

  28. Gofferje H, Fekl W (1979a) Diagnostik der Mangelernährung. Infusionstherapie 6:95–99

    Google Scholar 

  29. Gofferje H, Fekl W, Brand O, Rupprecht M (1979b) Untersuchungen zur Mangelernährung in einer medizinischen Klinik. Z Ernährungswiss 18:62–70

    Google Scholar 

  30. Gordon AH (1970) The effects of trauma and partial hepatectomy on the rates of synthesis of plasma proteins by the liver. In: Rothschild MA, Waldman T (eds) Plasma protein metabolism, regulation of synthesis, distribution, and degradation. Academic Press, New York London, S 351–368

    Google Scholar 

  31. Heberer G, Schultis K, Hoffmann K (Hrsg) (1976) Postaggressionsstoffwechsel — Grundlagen, Klinik, Therapie. Schattauer-Verlag, Stuttgart New York

    Google Scholar 

  32. Heberer G, Schultis K, Günther B (Hrsg) (1980) Postaggressionsstoffwechsel II. Schattauer-Verlag, Stuttgart New York

    Google Scholar 

  33. Hoak JC, Wilson WR, Warner ED, Theilen EO, Fry GL, Benoit FL (1969) Effects of triiodothyronine-induced hypermetabolism on factor VIII and fibrinogen in man. J Clin Invest 48:768–774

    PubMed  Google Scholar 

  34. Horbach L, Gunselmann W (1980) Ein statistischer Ansatz für eine therapeutische Gütekontrolle am Beispiel einer Herzinfarktstudie. Fortschr Med 98:503–507

    PubMed  Google Scholar 

  35. Jarnum S, Lassen NA (1961) Albumin and transferrin metabolism in infectious and toxic diseases. Scand J Clin Lab Invest 13:357–368

    PubMed  Google Scholar 

  36. Jeejeebhoy KN, Bruce-Robertson A, Ho J, Sodtke U (1973) The comparative effects of nutritional and hormonal factors on the synthesis of albumin, fibrinogen and transferrin. In: Protein Turnover (Ciba Foundation Symposium 9, new series). Elsevier Excerpta Medica, North-Holland Assoc Sci Publ, Amsterdam London New York, S 217–247

    Google Scholar 

  37. Johansson BG, Kindmark CO, Trell EY, Wollheim FA (1972) Sequential changes of plasma proteins after myocardial infarction. Scand J Clin Lab Invest 29 [Suppl 124]:117–126

    Google Scholar 

  38. John DW, Miller LL (1969) Regulation of net biosynthesis of serum albumin and acute phase plasma proteins. J Biol Chem 244:6134–6142

    PubMed  Google Scholar 

  39. Karl M, Reißmann G (1967) Quantitative Haptoglobin- und Properdinbestimmungen bei Patienten mit Myokardinfarkt. Z Inn Med 22:720–724

    Google Scholar 

  40. Koj A (1974) Acute-phase reactants — their synthesis, turnover and biological significance. In: Allison AC (ed) Structure and function of plasma proteins, Vol 1. Plenum Press, London New York, S 73–131

    Google Scholar 

  41. Kult J, Treutlein E, Dragoun GP, Heidland A (1975) Bedeutung der postoperativen parenteralen Ernährung — gemessen an nieder- und hochmolekularen Plasmaproteinen. Infusionstherapie 2:313–318

    Google Scholar 

  42. Kushner I, Broder ML, Karp D (1978) Control of the acute phase response. J Clin Invest 61:235–242

    PubMed  Google Scholar 

  43. Leathem JH (1964) Hormones and Protein Metabolism in Tissues and Organs. In: Munro HN, Allison JB (eds) Mammalian protein metabolism, Vol 1. Academic Press, New York London, S 356 ff

    Google Scholar 

  44. Logan RW, Murdoch WR (1966) Blood-levels of hydrocortisone, transaminases, and cholesterol after myocardial infarction. Lancet 2:521–524

    PubMed  Google Scholar 

  45. Löhlein D, Melbeck HH, Henkel E, Donay F, Canzler H (1977) Die periphere parenterale Ernährung im Vergleich zur alleinigen Kohlenhydratzufuhr während der postoperativen Phase. Infusionstherapie 4:197–202

    Google Scholar 

  46. Löhlein D, Henkel E (1979) Alternativen der peripher-venösen parenteralen Ernährung. Infusionstherapie 6:255–261

    Google Scholar 

  47. Losner S, Volk BW, Aronson SM (1957) Diagnostic aids in acute myocardial infarction: Clinical and experimental. Am Heart J 54:225–234

    PubMed  Google Scholar 

  48. Manchester KL (1970) Sites of hormonal regulation of protein metabolism. In: Munro HN (ed) Mammalian protein metabolism, Vol 4. Academic Press, New York London, S 229 ff

    Google Scholar 

  49. Mancini G, Carbonara AO, Heremans JF (1965) Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry 2:235–254

    PubMed  Google Scholar 

  50. Marner IL, Friborg S, Simonsen E (1975) Disease activity and serum proteins in ulcerative colitis. Immunochemical quantitation. Scand J Gastroenterol 10:537–544

    PubMed  Google Scholar 

  51. McCathie M, Owen JA, Macpherson AIS (1966) The effect of surgery on levels of some plasma proteins. Scot Med J 11:83–88

    PubMed  Google Scholar 

  52. McFarlane H (1977) Acute-phase proteins in malnutrition. In: Suskind RM (ed) Malnutrition and the immune response. Raven Press, New York, S 403–405

    Google Scholar 

  53. Milano G, Cooper EH, Goligher JC, Giles GR, Neville AM (1978) Serum Prealbumin, retinol-binding protein, transferrin and albumin levels in patients with large bowel cancer. J Natl Cancer Inst 61:687–691

    PubMed  Google Scholar 

  54. Minchin Clarke HG, Freeman T, Pryse-Phillips W (1971) Serum protein changes after injury. Clin Sci 40:337–344

    PubMed  Google Scholar 

  55. Morgan EH (1969) Factors affecting the synthesis of transferrin by rat tissue slices. J Biol Chem 244:4193–4199

    PubMed  Google Scholar 

  56. Neuhaus OW Balegno HF, Chandler AM (1961) Biochemical significance of serum glycoproteins. I. Changes in rat serum following injury. Proc Soc Exp Biol Med 107:960–964

    PubMed  Google Scholar 

  57. Nyman M (1959) Serum haptoglobin — methodological and clinical studies. Scand J Clin Lab Invest 11:[Suppl 39]

  58. Opie LH (1971) Acute metabolic response in myocardial infarction. Br Heart J 33 [Suppl]:129–137

    PubMed  Google Scholar 

  59. Oppenheimer JH, Bernstein G, Smith JC, Surks MI (1965) Effect of nonthyroidal disease and surgical trauma on he turnover of I131-labeled thyroxine-binding prealbumin (TBPA). J Clin Invest 44:1082–1083

    Google Scholar 

  60. Owen JA (1967) Effect of injury on plasma proteins. Adv Clin Chem 9:1–41

    PubMed  Google Scholar 

  61. Rennie JAN, Crawford GPM, Ogston D (1976) Changes in protease inhibitors after acute myocardial infarction. J Clin Pathol 29:639–641

    PubMed  Google Scholar 

  62. Sachs L (1974) Angewandte Statistik. Springer, Berlin Heidelberg New York

    Google Scholar 

  63. Schultis K, Beisbarth H (1975) Pathobiochemie des Postaggressionsstoffwechsels. In: Ahnefeld FW, Burri C, Dick W, Halmagyi M (Hrsg) Infusionstherapie II: Parenterale Ernährung. Springer, Berlin Heidelberg New York (Klinische Anästhesiologie und Intensivtherapie, Bd 7, S 35–49)

    Google Scholar 

  64. Schultis K Das Malnutritionssyndrom in seiner Ausprägung und klinischen Relevanz (in Vorbereitung)

  65. Sharma SC (1977) Catecholamines and free fatty acids in myocardial infarction and angina. J Clin Pathol 30:1037–1039

    PubMed  Google Scholar 

  66. Shetty PS, Watrasiewicz KE, Jung RT, James WPT (1979) Rapid-turnover transport proteins: an index of subclinical protein-energy malnutrition. Lancet 2:230–232

    PubMed  Google Scholar 

  67. Smith FR, Suskind R, Thanangkul O, Leitzmann C, Goodman DeWS, Olson REE (1975) Plasma vitamin A, retinol-binding protein and prealbumin concentrations in protein-calorie malnutrition. III. Response to varying dietary treatments. Am J Clin Nutr 28:732–738

    PubMed  Google Scholar 

  68. Smith SJ, Bos G, Esseveld MR, Van Eijk HG, Gerbrandy J (1977) Acute-phase proteins from the liver and enzymes from myocardial infarction; a quantitative relationship. Clin Chim Acta 81:75–85

    PubMed  Google Scholar 

  69. Socolow EL, Woeber KA, Purdy R, Holloway M, Ingbar SH (1965) Metabolism of human serum prealbumin in normal and sick patients. Clin Res 13:248

    Google Scholar 

  70. Surks MI, Oppenheimer JH (1964) Postoperative changes in the concentration of thyroxine-binding prealbumin and serum free thyroxine. J Clin Endocrinol 24:794–802

    Google Scholar 

  71. Taylor SH, Saxton C, Majid PA, Dykes JRW, Ghosh P, Stoker JB (1969) Insulin secretion following myocardial infarction — With particular respect to the pathogenesis of cardiogenic shock. Lancet 2:1373–1378

    PubMed  Google Scholar 

  72. Vetter NJ, Strange RC, Adams W, Oliver MF (1974) Initial metabolic and hormonal response to acute myocardial infarction. Lancet 1:284–289

    PubMed  Google Scholar 

  73. Wannemacher RW, Pekarek RS, Thompson WL, Curnow RT, Beall FA, Zenser TV, DeRubertis FR, Beisel WR (1975) A protein from polymorphonuclear leukocytes (LEM) which affects the rate of hepatic amino acid transport and synthesis of acute-phase globulins. Endocrinology 96:651–661

    PubMed  Google Scholar 

  74. Werner M, Odenthal D (1967) Serum protein changes after gastrectomy as a model of acute phase reaction. J Lab Clin Med 70:302–310

    PubMed  Google Scholar 

  75. Werner M, Cohnen G (1969a) Changes in serum proteins in the immediate postoperative period. Clin Sci 36:173–184

    PubMed  Google Scholar 

  76. Werner M (1969b) Serum protein changes during the acute phase reaction. Clin Chim Acta 25:299–305

    PubMed  Google Scholar 

  77. Young GA, Collins JP, Hill GL (1979) Plasma proteins in patients receiving intravenous amino acids or intravenous hyperalimentation after major surgery. Am J Clin Nutr 32:1192–1199

    PubMed  Google Scholar 

  78. Behringwerke AG (1977) Tabelle der Proteine des menschlichen Blutplasmas, Frankfurt/M

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ollenschläger, G., Gofferje, H., Horbach, L. et al. Postaggressionsstoffwechsel nach Herzinfarkt — dargestellt am Verhalten kurzlebiger Plasmaproteine. Klin Wochenschr 59, 437–449 (1981). https://doi.org/10.1007/BF01695898

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01695898

Key words

Schlüsselwörter

Navigation