Skip to main content
Log in

Semiclassical Limit for Almost Fermionic Anyons

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In two-dimensional space there are possibilities for quantum statistics continuously interpolating between the bosonic and the fermionic one. Quasi-particles obeying such statistics can be described as ordinary bosons and fermions with magnetic interactions. We study a limit situation where the statistics/magnetic interaction is seen as a “perturbation from the fermionic end”. We vindicate a mean-field approximation, proving that the ground state of a gas of anyons is described to leading order by a semi-classical, Vlasov-like, energy functional. The ground state of the latter displays anyonic behavior in its momentum distribution. Our proof is based on coherent states, Husimi functions, the Diaconis–Freedman theorem and a quantitative version of a semi-classical Pauli pinciple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We make the standard choice that f is a gaussian but any radial \(L^{2}\) function could be used instead.

References

  1. Adami, R., Teta, A.: On the Aharonov–Bohm effect. Lett. Math. Phys 43, 43–53 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arovas, S., Schrieffer, J., Wilczek, F.: Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722–723 (1984)

    Article  ADS  Google Scholar 

  3. Avron, J., Herbst, I., Simon, B.: Schrödinger operators with magnetic fields. I. General interactions. Duke Math. J. 45, 847–883 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bardos, C., Golse, F., Gottlieb, A.D., Mauser, N.J.: Mean-field dynamics of fermions and the time-dependent Hartree–Fock equation. J. Math. Pures Appl. 9(82), 665–683 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., et al.: Fractional statistics in anyon collisions. Science 173177 (2020)

  7. Benedikter, N., Porta, M., Schlein, B.: Mean-field evolution of fermionic systems. Commun. Math. Phys. 331, 1–45 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benedikter, N., Porta, M., Schlein, B.: Effective Evolution Equations from Quantum Dynamics. Springer Briefs in Mathematical Physics, Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  9. Bóna, M.: Combinatorics of Permutations. Discrete Mathematics and Its Applications, Chapman & Hall, Boca Raton (2004)

    Book  MATH  Google Scholar 

  10. Bourdeau, M., Sorkin, R.: When can identical particles collide? Phys. Rev. D 45, 687–696 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  11. Choi, M.Y., Lee, C., Lee, J.: Soluble many-body systems with flux-tube interactions in an arbitrary external magnetic field. Phys. Rev. B 46, 1489–1497 (1992)

    Article  ADS  Google Scholar 

  12. Clark, L.W., Anderson, B.M., Feng, L., Gaj, A., Levin, K., Chin, C.: Observation of density-dependent gauge fields in a Bose–Einstein condensate based on micromotion control in a shaken two-dimensional lattice. Phys. Rev. Lett. 121, 030402 (2018)

    Article  ADS  Google Scholar 

  13. Combescure, M., Robert, D.: Coherent States and Applications in Mathematical Physics. Theoretical and Mathematical PhysicsPhysics, Springer, Dordrecht (2012)

    Book  MATH  Google Scholar 

  14. Correggi, M., Duboscq, R., Rougerie, N., Lundholm, D.: Vortex patterns in the almost-bosonic anyon gas. Europhys. Lett. 126, 20005 (2019)

    Article  Google Scholar 

  15. Correggi, M., Lundholm, D., Rougerie, N.: Local density approximation for the almost-bosonic anyon gas. Anal. PDEs 10, 1169–1200 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Correggi, M., Oddis, L.: Hamiltonians for two-anyon systems. Rend. Mat. Appl. 39(39), 277–292 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Dabrowski, L., Stovicek, P.: Aharonov–Bohm effect with \(\delta \)-type interaction. J. Math. Phys 39, 47–62 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Diaconis, P., Freedman, D.: Finite exchangeable sequences. Ann. Probab. 8, 745–764 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Edmonds, M.J., Valiente, M., Juzeliūnas, G., Santos, L., Öhberg, P.: Simulating an interacting gauge theory with ultracold Bose gases. Phys. Rev. Lett. 110, 085301 (2013)

    Article  ADS  Google Scholar 

  20. Elgart, A., Erdős, L., Schlein, B., Yau, H.-T.: Nonlinear Hartree equation as the mean field limit of weakly coupled fermions. J. Math. Pures Appl. 83, 1241–1273 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Feinberg, E., Kasyanov, P., Zadoianchuk, N.: Fatou’s lemma for weakly converging probabilities. Theory Probab. Appl. 58, 683–689 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fournais, S., Lewin, M., Solovej, J.-P.: The semi-classical limit of large fermionic systems. Calc. Var. Partial Differ. Equ. 57, 105 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fournais, S., Madsen, P.: Semi-classical limit of confined fermionic systems in homogeneous magnetic fields (2019)

  24. Fröhlich, J., Knowles, A.: A microscopic derivation of the time-dependent Hartree–Fock equation with Coulomb two-body interaction. J. Stat. Phys. 145, 23–50 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Girardot, T.: Average field approximation for almost bosonic anyons in a magnetic field. J. Math. Phys. 61, 071901 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Goerbig, M.O.: Quantum Hall effects. arXiv:0909.1998 (2009)

  27. Gustafson, S.J., Sigal, I.M.: Mathematical Concepts of Quantum Mechanics. Universitext, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  28. Hewitt, E., Savage, L.J.: Symmetric measures on Cartesian products. Trans. Am. Math. Soc. 80, 470–501 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  29. Husimi, K.: Some formal properties of the density matrix. Proc. Phys. Math. Soc. Jpn. 22, 264 (1940)

    MATH  Google Scholar 

  30. Jain, J.K.: Composite Fermions. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  31. Larson, S., Lundholm, D.: Exclusion bounds for extended anyons. Arch. Ration. Mech. Anal. 227, 309–365 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Laughlin, R.B.: Nobel lecture: fractional quantization. Rev. Mod. Phys. 71, 863–874 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Lewin, M., Madsen, P.S., Triay, A.: Semi-classical limit of large fermionic systems at positive temperature. J. Math. Phys. 60, 091901 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Lieb, E.: Concavity properties and a generating function for Stirling numbers. J. Comb. Theory 5, 203–206 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lieb, E.H.: Thomas–Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–641 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Lieb, E.H., Loss, M.: Analysis, Vol. 14 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence (2001)

    Google Scholar 

  37. Lieb, E.H., Seiringer, R.: The Stability of Matter in Quantum Mechanics. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  38. Lieb, E.H., Simon, B.: The Thomas–Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lieb, E.H., Solovej, J.-P., Yngvason, J.: Asymptotics of heavy atoms in high magnetic fields: II. Semi-classical regions. Commun. Math. Phys 161, 77–124 (1994)

    Article  ADS  MATH  Google Scholar 

  40. Lieb, E.H., Solovej, J.-P., Yngvason, J.: Ground states of large quantum dots in magnetic fields. Phys. Rev. B 51, 10646–10665 (1995)

    Article  ADS  Google Scholar 

  41. Lieb, E.H., Thirring, W.E.: Bound on kinetic energy of fermions which proves stability of matter. Phys. Rev. Lett. 35, 687–689 (1975)

    Article  ADS  Google Scholar 

  42. Lieb, E.H., Thirring, W.E.: Inequalities for the Moments of the Eigenvalues of the Schrödinger Hamiltonian and Their Relation to Sobolev Inequalities. Studies in Mathematical Physics, pp. 269–303. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  43. Lundholm, D., Rougerie, N.: The average field approximation for almost bosonic extended anyons. J. Stat. Phys. 161, 1236–1267 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Lundholm, D., Rougerie, N.: Emergence of fractional statistics for tracer particles in a Laughlin liquid. Phys. Rev. Lett. 116, 170401 (2016)

    Article  ADS  Google Scholar 

  45. Lundholm, D., Solovej, J.P.: Hardy and Lieb–Thirring inequalities for anyons. Commun. Math. Phys. 322, 883–908 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Lundholm, D., Rougerie, N.: Local exclusion principle for identical particles obeying intermediate and fractional statistics. Phys. Rev. A 88, 062106 (2013)

    Article  ADS  Google Scholar 

  47. Lundholm, D., Rougerie, N.: Local exclusion and Lieb–Thirring inequalities for intermediate and fractional statistics. Ann. Henri Poincaré 15, 1061–1107 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Lundholm, D., Rougerie, N.: Fermionic behavior of ideal anyons. Lett. Math. Phys. 108, 2523–2541 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Mashkevich, S.: Finite-size anyons and perturbation theory. Phys. Rev. D 54, 6537–6543 (1996)

    Article  ADS  Google Scholar 

  50. Menon, V.: On the maximum of Stirling numbers of the second kind. J. Combin. Theory (A) 15, 11–24 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  51. Molinari, L.: Notes on wick’s theorem in many-body theory. arXiv:1710.09248 (2017)

  52. Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020)

    Article  Google Scholar 

  53. Nakamura, J., Liang, S., Gardner, G.-C., Manfra, M.-J.: Direct observation of anyonic braiding statistics at the \(\nu \)=1/3 fractional quantum Hall state. Nat. Phys. J. 16,(2020)

  54. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-adjointness. Academic Press, New York (1975)

    MATH  Google Scholar 

  55. Rennie, B., Dobson, A.: On Stirling numbers of the second kind. J. Combin. Theory 7, 116–121 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  56. Rougerie, N.: De Finetti theorems, mean-field limits and Bose–Einstein condensation. arXiv:1506.05263 (2014). LMU Lecture Notes

  57. Rougerie, N.: Some contributions to many-body quantum mathematics. arXiv:1607.03833 (2016). Habilitation Thesis

  58. Rougerie, N.: Théorèmes de De Finetti, limites de champ moyen et condensation de Bose–Einstein, Les cours Peccot, Spartacus IDH, Paris, 2016. Cours Peccot, Collège de France: février-mars (2014)

  59. Rougerie, N.: Scaling limits of bosonic ground states, from many-body to nonlinear Schrödinger. arXiv:2002.02678 (2020)

  60. Schatten, R.: Norm Ideals of Completely Continuous Operators, vol. 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete, Folge (1960)

  61. Solovej, J.P.: Many body quantum mechanics. Web: http://web.math.ku.dk/~solovej/MANYBODY, Course Homepage for Many-body Quantum Physics, ESI (2014)

  62. Takahashi, K.: Wigner and Husimi functions in quantum mechanics. J. Phys. Soc. Jpn. 55, 762–779 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  63. Thirring, W.: A lower bound with the best possible constant for Coulomb Hamiltonians. Commun. Math. Phys. 79, 1–7 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  64. Trugenberger, C.: Ground state and collective excitations of extended anyons. Phys. Lett. B 288, 121–128 (1992)

    Article  ADS  Google Scholar 

  65. Valentí-Rojas, G., Westerberg, N., Öhberg, P.: Synthetic flux attachment. Phys. Rev. Res. 2, 033453 (2020)

    Article  Google Scholar 

  66. Villani, C.: Optimal Transport, Old and New, vol. 108 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (2008)

    Google Scholar 

  67. Yakaboylu, E., Ghazaryan, A., Lundholm, D., Rougerie, N., Lemeshko, M., Seiringer, R.: Quantum impurity model for anyons. Phys. Rev. B 102, 144109 (2020)

    Article  ADS  Google Scholar 

  68. Yakaboylu, E., Lemeshko, M.: Anyonic statistics of quantum impurities in two dimensions. Phys. Rev. B 98, 045402 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (Grant agreement CORFRONMAT No 758620) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Rougerie.

Additional information

Communicated by A. Giuliani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Properties of the Vlasov Functional

In this “Appendix” we etablish some of the fundamental properties of the functional \(\mathcal {E}_{V}\) and some useful bounds on the vector potential \(\mathbf {A}^{R}[\rho ]\) associated to a measure \(\rho \).

Lemma A.1

(Lower semicontinuity of \(\mathcal {E}_{V})\).

Let \((\mu _n)_{n\ge 0}\) be a sequence of positive measures on \(\mathbb {R}^4\) satisfying

$$\begin{aligned} 0\le \mu _{n}\le \left( 2\pi \right) ^{-2}, \quad \int _{\mathbb {R}^4} \mu _n \le C \end{aligned}$$

with C independent of N. If \(\mu _n\) converges to \(\mu \) as measures we have

$$\begin{aligned} \liminf _{n\rightarrow \infty }\mathcal {E}_{V}\left[ \mu _{n}\right] \ge \mathcal {E}_{V}\left[ \mu \right] . \end{aligned}$$
(A.1)

Proof

We recall that the marginal in p of \(\mu _{n}\) is

$$\begin{aligned} \rho _{n} (x)=\int _{\mathbb {R}^{2}}\mu _{n} (x,p)\mathrm{d}p. \end{aligned}$$
(A.2)

It follows from applying the bathtub principle [36, Theorem 1.14] in the p variable that

$$\begin{aligned} \mathcal {E}_{V}\left[ \mu _n \right] \ge \mathcal {E}_{V}^{\mathrm {TF}}\left[ \rho _n \right] :=2\pi \int _{\mathbb {R}^{2}}\rho _n ^{2}(x)\mathrm{d}x+\int _{\mathbb {R}^{2}}V(x)\rho _n(x)\mathrm{d}x. \end{aligned}$$

Hence we may assume that \(\left\Vert \rho _n \right\Vert _{L^{2}}\) is uniformly bounded and that \(\rho _{n} \rightharpoonup \rho \) weakly in \(L^{2}\left( \mathbb {R}^{2}\right) \). We then deduce from the weak Young inequality [36, Chapter 4] that

$$\begin{aligned} \left\Vert \mathbf {A}^{2}[\rho _{n}]\rho _{n} \right\Vert _{L^{1}}\le C \left\Vert \nabla ^{\perp }w*\rho _{n} \right\Vert ^{2}_{L^{\infty }}\le C \left\Vert \rho _{n} \right\Vert ^{2}_{L^{2}}\left\Vert \nabla ^{\perp }w \right\Vert ^{2}_{L^{2,w}}\le C. \end{aligned}$$

We recall that the weak \(L^{p}(\mathbb {R}^{d})\) space is the set of functions

$$\begin{aligned} L^{w,2}=\left\{ f\;|\; \mathrm {Leb}\left( \left\{ x\in \mathbb {R}^{d}:|f(x)|>\lambda \right\} \right) \le \left( \frac{C}{\lambda }\right) ^{p} \right\} \end{aligned}$$

with the associated norm

$$\begin{aligned} \left\Vert f \right\Vert _{L^{w,2}}=\sup _{\lambda>0}\lambda \;\mathrm {Leb}\left( x\in \mathbb {R}^{d},\;\left|f(x)\right|>\lambda \right) ^{1/2} \end{aligned}$$

where \(\mathrm {Leb}\) is the Lebesgue measure. We expand the energy

$$\begin{aligned} \mathcal {E}_{V}\left[ \mu _{n} \right] =\int _{\mathbb {R}^{4}}\left( \left( p^{\mathbf {A}}\right) ^{2}+2\beta p^{\mathbf {A}}\cdot \mathbf {A}[\rho _{n}]+\beta ^{2}\mathbf {A}^{2}[\rho _{n}]+V\right) \mu _{n}(x,p)\mathrm{d}x\mathrm{d}p \end{aligned}$$
(A.3)

and use that \(ab\le \frac{a^{2}}{2\sigma }+\frac{\sigma b^{2}}{2}\) to get

$$\begin{aligned} 2\left( p^{\mathbf {A}}\right) \cdot \mathbf {A}\left[ \rho _{n}\right] \ge -\sigma |p^{\mathbf {A}}|^{2}-\frac{1}{\sigma }\left|\mathbf {A}\left[ \rho _{n}\right] \right|^{2} \end{aligned}$$

and hence

$$\begin{aligned} \mathcal {E}_{V}\left[ \mu _{n}\right] +C\left\Vert \mathbf {A}^{2}\left[ \rho _{n}\right] \rho _{n} \right\Vert _{L^{1}}\ge C\int _{\mathbb {R}^{4}}\left( |p^{\mathbf {A}} |^{2}+V\right) \mathrm{d}\mu _{n}. \end{aligned}$$

Thus \((\mu _{n})\) is tight and, up to extraction, converges strongly in \(L^{1}\left( \mathbb {R}^{4}\right) \). In order to obtain the convergence of \(\mathbf {A}^{2}[\rho _{n}]\mu _{n}\) we write

$$\begin{aligned} \rho _{n}(x_{1})\rho _{n}(x_{2})\mu _{n}(x_{3},p_{3})- \rho (x_{1})\rho (x_{2})\mu (x_{3},p_{3})&=\left( \rho _{n}(x_{1})- \rho (x_{1})\right) \left( \rho _{n}(x_{2})\right. \nonumber \\&\quad \left. - \rho (x_{2})\right) \mu _{n}(x_{3},p_{3})\nonumber \\&\quad +\left( \rho _{n}(x_{1})- \rho (x_{1})\right) \rho (x_{2})\mu _{n}(x_{3},p_{3})\nonumber \\&\quad + \rho (x_{1})\left( \rho _{n}(x_{2})- \rho (x_{2})\right) \mu _{n}(x_{3},p_{3})\nonumber \\&\quad -\rho (x_{1})\rho (x_{2})\left( \mu _{n}(x_{3},p_{3})-\mu (x_{3},p_{3})\right) \end{aligned}$$
(A.4)

and treat each resulting term separately. The first term yields

$$\begin{aligned} \left\Vert \mathbf {A}^{2}[\rho _{n}-\rho ]\mu _{n} \right\Vert _{L^{1}} \le \left\Vert \mu _{n} \right\Vert _{L^1}\left\Vert \nabla ^{\perp }w*\left( \rho _{n}-\rho \right) \right\Vert ^{2}_{L^{\infty }}\le \left\Vert \rho _{n}-\rho \right\Vert ^{2}_{L^{2}}\left\Vert \nabla ^{\perp }w \right\Vert ^{2}_{L^{2,w}} \end{aligned}$$

using that \(||\mu _{n}||_{L^1}\le C\) and the weak Young inequality. For the second term of (A.4)

$$\begin{aligned} \left\Vert \mathbf {A}[\rho _{n}-\rho ]\mathbf {A}[\rho ]\mu _{n} \right\Vert _{L^{1}}\le \left\Vert \mathbf {A}[\rho ] \right\Vert _{L^{\infty }}\left\Vert \nabla ^{\perp }w*(\rho _{n}-\rho ) \right\Vert _{L^{\infty }}\le \left\Vert \rho \right\Vert _{L^{2}}\left\Vert \rho _{n}-\rho \right\Vert _{L^{2}}\left\Vert \nabla ^{\perp }w \right\Vert ^{2}_{L^{2,w}} \end{aligned}$$

and for the last one

$$\begin{aligned} \left\Vert \mathbf {A}^{2}[\rho ](\mu _{n}-\mu ) \right\Vert _{L^{1}}\le \left\Vert \mu _{n}-\mu \right\Vert _{L^{1}}\left\Vert \mathbf {A}^{2}[\rho ] \right\Vert _{L^{\infty }}\le \left\Vert \mu _{n}-\mu \right\Vert _{L^1}\left\Vert \nabla ^{\perp }w \right\Vert ^{2}_{L^{2,w}}\left\Vert \rho \right\Vert _{L^2} \end{aligned}$$

For the cross term of (A.3), \(p^{\mathbf {A}}.\mathbf {A}\left[ \rho _{n}\right] \mu _{n}\) we observe that

$$\begin{aligned} \left\Vert \mathbf {A}[\rho -\rho _{n}] \right\Vert _{L^2}\le \left\Vert \rho -\rho _{n} \right\Vert _{L^1}\left\Vert \nabla ^{\perp }w \right\Vert _{L^{2,w}} \end{aligned}$$

so \(\mathbf {A}[\rho _{n}]\) converges strongly in \(L^{2}\). We have \(||\left( p^{\mathbf {A}}\right) ^{2}\mu _{n}||_{L^{1}}\le C\) so \(p^{\mathbf {A}}\mu _{n}\) converges weakly in \(L^{2}\) and by weak-strong convergence we deduce that the cross term converges. We conclude using Fatou’s lemma for V and the kinetic term

$$\begin{aligned} \liminf _{n\rightarrow \infty }\int _{\mathbb {R}^{4}}|p+\mathbf {A}_{e}(x)|^{2}\mu _{n}(x,p)\mathrm{d}x\mathrm{d}p&\ge \int _{\mathbb {R}^{4}}|p+\mathbf {A}_{e}(x)|^{2}\mu (x,p)\mathrm{d}x\mathrm{d}p\\ \liminf _{n\rightarrow \infty }\int _{\mathbb {R}^{2}}V(x)\rho _{n}(x)\mathrm{d}x&\ge \int _{\mathbb {R}^{2}}V(x)\rho (x)\mathrm{d}x \end{aligned}$$

\(\square \)

Lemma A.2

(Existence of minimizers).

There exists a minimizer for the problem

$$\begin{aligned} e^{\mathrm {TF}}=\inf \left\{ \mathcal {E}_{V}[\mu ]\;|\; 0\le \mu \le \left( 2\pi \right) ^{-2}\;|\; \int _{\mathbb {R}^{4}}\mu = 1 \right\} \end{aligned}$$

Proof

We consider a minimizing sequence \(\left( \mu _{n}\right) _{n}\) converging to a candidate minimizer \(\mu _{\infty }\). By Lemma (A.1) we have

$$\begin{aligned} e^\mathrm{TF} = \inf _{n\rightarrow \infty }\mathcal {E}_{V}\left[ \mu _{n}\right] \ge \mathcal {E}_{V}\left[ \mu _{\infty }\right] . \end{aligned}$$

We also found during the previous proof that \(\left( \mu _{n}\right) _{n}\) must be tight, hence

$$\begin{aligned} \int _{\mathbb {R}^{4}}\mu _\infty = 1. \end{aligned}$$

\(\square \)

Lemma A.3

(Convergence to \(\mathcal {E}_{V}\) when \(R\rightarrow 0)\).

For any measure \(\mu \le \left( 2\pi \right) ^{-2}\) such that \(\int _{\mathbb {R}^{4}}\mu \le C\) we have that

$$\begin{aligned} \left|\mathcal {E}^{R}_{V}[\mu ]-\mathcal {E}^{0}_{V}[\mu ]\right|\le CR \left( \mathcal {E}^{0}_{V}[\mu ]+\mathcal {E}^{R}_{V}[\mu ]\right) \end{aligned}$$

where

$$\begin{aligned} \mathcal {E}^{R}_{V}[\mu ]=\int _{\mathbb {R}^{4}}\left( p^{\mathbf {A}}+\beta \mathbf {A}^{R}\left[ \mu \right] (x)\right) ^{2}+V(x) \mathrm{d}\mu \end{aligned}$$

Proof

$$\begin{aligned} \left|\mathcal {E}^{R}_{V}[\mu ]-\mathcal {E}^{0}_{V}[\mu ]\right|&= \left|\left\Vert \left( p^{\mathbf {A}}+_beta\mathbf {A}^{R}\left[ \mu \right] (x)\right) \sqrt{\mu } \right\Vert _{L^2}^{2}-\left\Vert \left( p^{\mathbf {A}}+\beta \mathbf {A}^{0}\left[ \mu \right] (x)\right) \sqrt{\mu } \right\Vert _{L^2}^{2}\right|\\&\le \left|\left\Vert \left( p^{\mathbf {A}}+_beta\mathbf {A}^{R}\left[ \mu \right] (x)\right) \sqrt{\mu } \right\Vert _{L^2}-\left\Vert \left( p^{\mathbf {A}}+\beta \mathbf {A}^{0}\left[ \mu \right] (x)\right) \sqrt{\mu } \right\Vert _{L^2}\right|\\&\;\;\;\;\;\;\;\;\;\cdot \left( \mathcal {E}_{V}^{R}\left[ \mu \right] ^{1/2}+\mathcal {E}_{V}\left[ \mu \right] ^{1/2}\right) \\&\le \left\Vert \left( \mathbf {A}^{R}\left[ \mu \right] -\mathbf {A}\left[ \mu \right] \right) \sqrt{\mu } \right\Vert _{L^2} \left( \mathcal {E}_{V}^{R}\left[ \mu \right] ^{1/2}+\mathcal {E}_{V}\left[ \mu \right] ^{1/2}\right) \end{aligned}$$

where we have used the triangle inequality. Moreover we have that

$$\begin{aligned} \left\Vert \left( \mathbf {A}^{R}\left[ \mu \right] -\mathbf {A}\left[ \mu \right] \right) ^{2}\rho \right\Vert ^{1/2}_{L^1}&\le \left\Vert \rho \right\Vert _{L^1}^{1/2}\left\Vert \left( \nabla ^{\perp }w_{R}-\nabla ^{\perp }w_{0}\right) *\rho \right\Vert _{L^\infty }\\&\le \left\Vert \rho \right\Vert _{L^2}\left\Vert \nabla ^{\perp }w_{R}-\nabla ^{\perp }w_{0} \right\Vert _{L^{2,w}} \end{aligned}$$

by the weak Young inequality and because

$$\begin{aligned} \int _{\mathbb {R}^{2}}\left( \int _{\mathbb {R}^{2}}\frac{1}{|x|}\chi (u) \mathrm{d}u-\int _{B(0,R)}\frac{1}{|x|}\chi (u)\mathrm{d}u\right) \mathrm{d}x\le \int _{B(0,2R)}\frac{1}{|x|}\mathrm{d}x =CR \end{aligned}$$

Using that the minimizer in p

$$\begin{aligned} \mu ^{\mathrm {TF}}=\left( 2\pi \right) ^{-2}11\left( |p^{\mathbf {A}}+\mathbf {A}[\rho ]|\le \sqrt{4\pi \rho }\right) \end{aligned}$$

is explicit we have

$$\begin{aligned} \mathcal {E}_{V}[\mu ]\ge \mathcal {E}_{\mathrm {TF}}(\rho )=2\pi \int _{\mathbb {R}^{2}}\rho ^{2}(x)\mathrm{d}x+\int _{\mathbb {R}^{2}}V(x)\rho (x)\mathrm{d}x \end{aligned}$$

and the minimization problem is now formulated in terms of

$$\begin{aligned} \rho (x)=\int _{\mathbb {R}^{2}}\mu (x,p)\mathrm{d}p. \end{aligned}$$

This gives

$$\begin{aligned} \mathcal {E}_{V}[\mu ]\ge C\left\Vert \rho \right\Vert _{L^2}^{2} \end{aligned}$$

and concludes the proof. \(\quad \square \)

Lemma A.4

(Dependence on the upper perturbed constraint).

The infimum of \(\mathcal {E}_{V}\) does not depend on \(\varepsilon \) nor \(\gamma \) at first order

$$\begin{aligned} \inf \left\{ \mathcal {E}_{V}[\mu ]\;|\;0\le \mu \le \frac{1+\varepsilon }{\left( 2\pi \right) ^{2}},\;\int \mu = 1-\gamma \right\} \ge \left( 1-2\varepsilon \right) \left( 1-\gamma \right) e_{\mathrm {TF}} \end{aligned}$$

Proof

We calculate the infimum with the Bathtub principle [36, Theorem 1.14]. This infimum is achieved for

$$\begin{aligned} \mu =\mu _{\varepsilon }^{\mathrm {TF}}=\left( 2\pi \right) ^{-2}(1+\varepsilon )11\left( |p^{\mathbf {A}}+\beta \mathbf {A}[\rho ]|^{2}\le s(x)\right) \end{aligned}$$

where \(s(x)=\frac{4\pi \rho }{1+\varepsilon }\) because

$$\begin{aligned} \int _{\mathbb {R}^{2}}\mu ^{\mathrm {TF}} (x,p)\mathrm{d}p=\rho (x)=\int _{\mathbb {R}^{2}}(1+\varepsilon )11\left( |p^{\mathbf {A}}+\beta \mathbf {A}[\rho ]|\le s(x)\right) \mathrm{d}p = \pi (1+\varepsilon )s(x) \end{aligned}$$

So, evaluating the energy

$$\begin{aligned} \mathcal {E}_{V}[\mu _{\varepsilon }^{\mathrm {TF}} ]=\mathcal {E}^{\varepsilon }_{\mathrm {TF}}[\rho ]=2\pi \int _{\mathbb {R}^{2}}\frac{\rho ^{2}\left( x\right) }{\left( 1+\varepsilon \right) ^{2}}\mathrm{d}x+\int _{\mathbb {R}^{2}}\frac{V(x)\rho (x)}{\left( 1+\varepsilon \right) }\mathrm{d}x \end{aligned}$$
(.5)

but we can see that

$$\begin{aligned} \mathcal {E}^{\varepsilon }_{\mathrm {TF}}[\rho ]\ge \mathcal {E}_{\mathrm {TF}}[\rho ]\left( 1-2\varepsilon \right) \end{aligned}$$
(.6)

where \( \mathcal {E}_{\mathrm {TF}}[\rho ]\) is given in (1.21). \(\quad \square \)

Appendix B: Bounds for \(\mathbf {A}^{R}\)

Lemma B.1

(Bounds linked to \(\mathbf {A}^{R})\).

All second-order directional derivative of the function

$$\begin{aligned} w_{R}(u_{1},u_{2}): \mathbb {R}^{2}\rightarrow \mathbb {R}^{2} \end{aligned}$$

are bounded in absolute value by the radial derivative:

$$\begin{aligned} \left|\partial _{u_{i}}\partial _{u_{j}} w_{R}(\mathbf {u})\right|\le C\left|\partial _{u}^{2}w_{R}(u)\right| \end{aligned}$$
(B.1)

for any \((i,j)\in \left\{ 1,2\right\} ^{2}\). We also have the estimates

$$\begin{aligned}&\left\Vert \Delta \nabla ^{\perp }w_{R} \right\Vert _{L^{\infty }}\le \frac{C}{R^{3}} \end{aligned}$$
(B.2)
$$\begin{aligned}&\left\Vert \nabla ^{\perp }w_{R} \right\Vert _{L^\infty }\le \frac{C}{R} \end{aligned}$$
(B.3)
$$\begin{aligned}&\left\Vert \Delta \nabla ^{\perp }w_{R} \right\Vert _{2}\le \frac{C}{R^{2}} \end{aligned}$$
(B.4)
$$\begin{aligned}&\left\Vert \nabla \left( \nabla ^{\perp }w_{R}(u)\right) ^{i} \right\Vert _{L^\infty }\le \frac{C}{R^{2}} \end{aligned}$$
(B.5)
$$\begin{aligned}&\left\Vert \nabla \left( \nabla ^{\perp }w_{R}(u).\nabla ^{\perp }w_{R}(v)\right) \right\Vert _{L^\infty }\le \frac{C}{R^{3}} \end{aligned}$$
(B.6)

Proof

Recall that

$$\begin{aligned} w_{R}(x)=\left( \log |\;.\;|*\chi _{R}\right) (x) \end{aligned}$$

with \(\chi _{R}\) defined as in (1.8). We call \(u_{1}\) and \(u_{2}\) the two components of the vector \(\mathbf {u}\) and u its norm. Using Newton’s theorem [36, Theorem 9.7] we write

$$\begin{aligned} w_{R}(u)=\int _{\mathbb {R}^{2}}\log |\mathbf {u}-\mathbf {v}|\chi _{R}(v)\mathrm {d}v&=2\pi \log (u)\int _{0}^{u}\chi _{R}(r)r\mathrm{d}r + 2\pi \int _{u}^{+\infty }r\log (r)\chi _{R}(r)\mathrm{d}r \end{aligned}$$

hence

$$\begin{aligned}&\partial _{u}w_{R}(u)=\frac{1}{u}\int _{B(0,u)}\chi _{R}(v) \mathrm{d}v\nonumber \\&\partial ^{2}_{u}w_{R}(u)=-\frac{1}{u^{2}}\int _{B(0,u)}\chi _{R}(v) \mathrm{d}v +2\pi \chi _{R}(u) \end{aligned}$$
(B.7)
$$\begin{aligned}&\partial ^{3}_{u}w_{R}(u)=\frac{1}{u^{3}}\int _{B(0,u)}\chi _{R}(v) \mathrm{d}v +C\frac{\chi _{R}(u)}{u}+C\phi _{R}(u) \end{aligned}$$
(B.8)

where \(\phi _{R}(u)=\partial _{u}\chi _{R}(u)\) is bounded with compact support. We observe that regardless of whether u is smaller or greater than 2R we have

$$\begin{aligned} \left|\partial _{u}w_{R}(u)\right|\le \frac{C}{R}\;\;\text {and}\;\; \left|\partial ^{2}_{u}w_{R}(u)\right|\le \frac{C}{R^{2}} \end{aligned}$$
(B.9)

and get (B.3). Moreover

$$\begin{aligned} \nabla ^{\perp }w_{R}(u_{1},u_{2})=\nabla ^{\perp }w_{R}(u)=\frac{\partial _{u}w_{R}(u)}{u}\mathbf {u}^{\perp } \end{aligned}$$
(B.10)

We compute the two derivatives of the second component of (B.10)

$$\begin{aligned} \left|\partial _{u_{1}}(\frac{u_{1}}{u}\partial _{u}w_{R})\right|&=\left|\frac{\partial _{u}w_{R}}{u}+\frac{u_{1}^{2}}{u^{2}}\partial ^{2}_{u}w_{R}-\frac{u_{1}^{2}}{u^{3}}\partial _{u}w_{R}\right|\le \frac{C}{u^{2}}\int _{B(0,u)}\chi _{R}(v) \mathrm{d}v +C\chi _{R}(u) \end{aligned}$$
(B.11)
$$\begin{aligned} \left|\partial _{u_{2}}(\frac{u_{1}}{u}\partial _{u}w_{R})\right|&=\left|-\frac{u_{1}u_{2}}{u^{3}}\partial _{u}w_{R}(u)+\frac{u_{1}u_{2}}{u^{2}}\partial ^{2}_{u}w_{R}(u)\right|\le \frac{C}{u^{2}}\int _{B(0,u)}\chi _{R}(v) \mathrm{d}v +C\chi _{R}(u) \end{aligned}$$
(B.12)

we do the same with the first component of \(\nabla ^{\perp }w_{R}\) and get (B.1). If we differentiate once again we get

$$\begin{aligned} \left|\partial ^{2}_{u_{1}}(\frac{u_{1}}{u}\partial _{u}w_{R})\right|&|\le \frac{C}{u^{3}}\int _{B(0,u)}\chi _{R}(v) \mathrm{d}v +C\frac{\chi _{R}(u)}{u}+C\phi _{R}(u) \end{aligned}$$

which is also the case for the other component and derivative. We deduce

$$\begin{aligned} \left\Vert \Delta \nabla ^{\perp }w_{R} \right\Vert _{L^{\infty }}\le \frac{C}{R^{3}} \end{aligned}$$

We can also compute

$$\begin{aligned} \left\Vert \Delta \nabla ^{\perp }w_{R} \right\Vert _{L^2}^{2}\le \frac{C}{R^{4}} \end{aligned}$$

which gives (B.4). To get (B.5) we combine (B.9) and (B.12). For the third inequality (B.6) we expand a little bit our first expression

$$\begin{aligned} \nabla ^{\perp }w_{R}(u).\nabla ^{\perp }w_{R}(v)&=(u_{1}v_{1}+u_{2}v_{2})\frac{\partial _{u}w_{R}(u)\partial _{v}w_{R}(v)}{uv} \end{aligned}$$

so the first component of the gradient is

$$\begin{aligned} \partial _{u_{1}}\nabla ^{\perp }w_{R}(u).\nabla ^{\perp }w_{R}(v)&=v_{1}\frac{\partial _{u}w_{R}(u)\partial _{v}w_{R}(v)}{uv}+\frac{u_{1}}{u}\partial _{u}\left[ \frac{\partial _{u}w_{R}(u)\partial _{v}w_{R}(v)}{uv}\right] (u_{1}v_{1}+u_{2}v_{2}) \end{aligned}$$

Now

$$\begin{aligned} \left\Vert \nabla \left( \nabla ^{\perp }w_{R}(u).\nabla ^{\perp }w_{R}(v)\right) \right\Vert ^{2}_{L^\infty }&=\sum _{x=u_{1},u_{2},v_{1},v_{2}}\left( \partial _{x}\nabla ^{\perp }w_{R}(u).\nabla ^{\perp }w_{R}(v)\right) ^{2} \end{aligned}$$

The rest of the proof consists of the computation of the above term using basic inequalities. \(\quad \square \)

Appendix C: Computations for Squeezed Coherent States

We give for completeness three proofs that we skipped in the main text.

Proof of Lemma 1.3

For any \(u\in L^{2}(\mathbb {R}^{2})\),

$$\begin{aligned} \left\langle F_{x,p},u \right\rangle&=\int _{\mathbb {R}^{2}}F_{\hbar _{x}}(y-x)u(y)e^{-\mathrm {i}\frac{p.y}{\hbar }}\mathrm{d}y\nonumber \\&=2\pi \hbar \mathcal {F}_{\hbar }\left[ F_{\hbar _{x}}(\cdot -x)u(\cdot )\right] (p)=2\pi \hbar \left( \mathcal {F}_{\hbar }\left[ F_{\hbar _{x}}(\cdot -x)\right] *\mathcal {F}_{\hbar }\left[ u(\cdot )\right] \right) (p) \end{aligned}$$
(C.1)
$$\begin{aligned}&=\int _{\mathbb {R}^{2}}G_{\hbar _{p}}(k-p)\mathcal {F}_{\hbar } [u](k)e^{-\mathrm {i}\frac{k.x}{\hbar }}\mathrm{d}k=2\pi \hbar \mathcal {F}_{\hbar }\left[ G_{\hbar _{p}}(\cdot -p)\mathcal {F}_{\hbar } [u]\right] (x). \end{aligned}$$
(C.2)

It follows that

$$\begin{aligned} \frac{1}{(2\pi \hbar )^{2}}\int _{\mathbb {R}^{2}}\int _{\mathbb {R}^{2}}\left\langle \psi , P_{x,p}\psi \right\rangle \;\mathrm{d}x\mathrm{d}p&=\frac{1}{(2\pi \hbar )^{2}}\int _{\mathbb {R}^{2}}\int _{\mathbb {R}^{2}}|\left\langle F_{x,p},u \right\rangle |^{2}\mathrm{d}x\mathrm{d}p\\&=\int _{\mathbb {R}^{2}}\left( \int _{\mathbb {R}^{2}}\left|\mathcal {F}_{\hbar }\left[ F_{\hbar _{x}}(\cdot -x)u(\cdot )\right] (p)\right|^{2}\mathrm{d}p\right) \mathrm{d}x\\&=\int _{\mathbb {R}^{2}}\left( \int _{\mathbb {R}^{2}}\left|F_{\hbar _{x}}(y -x)u(y)\right|^{2}\mathrm{d}y\right) \mathrm{d}x\\&=||F_{\hbar _{x}}||^{2}_{L^{2}(\mathbb {R}^{2})}||u||^{2}_{L^{2}(\mathbb {R}^{2})}=||u||^{2}_{L^{2}(\mathbb {R}^{2})}. \end{aligned}$$

\(\square \)

Fourier transform of F

We need to calculate the Fourier Transform of the Gaussian

$$\begin{aligned} G_{\hbar _{p}}(p)=\frac{1}{2\pi \hbar }\frac{\sqrt{\hbar _{x}}^{2}}{\sqrt{\hbar _{x}}}\frac{1}{\sqrt{\pi }}\left( \int _{\mathbb {R}}e^{-\frac{u^{2}}{2}-\frac{\mathrm {i}pu}{\sqrt{\hbar _{p}}}}\mathrm{d}u\right) ^{2}=\frac{1}{2\pi \sqrt{\hbar _{p}}}\frac{1}{\sqrt{\pi }}G_{1}^{2}(p) \end{aligned}$$

with

$$\begin{aligned} G_{1}(p)=\int _{\mathbb {R}}e^{-\frac{u^{2}}{2}-\frac{\mathrm {i}pu}{\sqrt{\hbar _{p}}}}\mathrm{d}u \end{aligned}$$

but we also have

$$\begin{aligned} \frac{\mathrm{d}G_{1}(p)}{\mathrm{d}p}=-\frac{p}{\hbar _{p}}G_{1}(p) \end{aligned}$$

which gives the result. \(\quad \square \)

Proof of Lemma 3.2

We use (C.2) and write for every fixed \(y\in \mathbb {R}^{2(N-k)}\)

$$\begin{aligned}&\Big < F_{x_{1},p_{1}}(\cdot )\otimes ...\otimes F_{x_{k},p_{k}}(\cdot ),\Psi _{N}(\cdot ,z) \Big >_{L^{2}(\mathbb {R}^{2k})}\\&\quad =(2\pi \hbar )^{2k}\mathcal {F}_{\hbar }\left[ F_{x_{1},0}(\cdot )\otimes ...\otimes F_{x_{k},0}(\cdot )\Psi _{N}(\cdot , z)\right] (p_{1},...,p_{k})\\&\quad =(2\pi \hbar )^{2k}\mathcal {F}_{\hbar }\left[ G_{0,p_{1}}(\cdot )\otimes ...\otimes G_{0,p_{k}}(\cdot )\mathcal {F}_{\hbar } \left[ \Psi _{N}\right] (\cdot , z)\right] (x_{1},...,x_{k}). \end{aligned}$$

Next we sum over the \(p_{j}\)’s using (1.32):

$$\begin{aligned}&\frac{1}{(2\pi )^{2k}}\int _{\mathbb {R}^{2k}}m_{\Psi _{N}}^{(k)}(x_{1},p_{1},...,x_{k},p_{k})\mathrm{d}p_{1}...\mathrm{d}p_{k}\\&\quad =\frac{k!}{(2\pi )^{2k}}\begin{pmatrix} N \\ k \end{pmatrix}\int _{\mathbb {R}^{2k}}\mathrm{d}p_{1}...\mathrm{d}p_{k}\int _{\mathbb {R}^{2(N-k}}\left|\Big < F_{x_{1},p_{1}}(\cdot )\otimes ...\otimes F_{x_{k},p_{k}}(\cdot ),\Psi _{N}(\cdot ,z) \Big >\right|^{2}\mathrm{d}z\\&\quad =k!\begin{pmatrix} N \\ k \end{pmatrix}\int _{\mathbb {R}^{2k}}\mathrm{d}p_{1}...\mathrm{d}p_{k}\int _{\mathbb {R}^{2(N-k)}}\left|\mathcal {F}_{\hbar }\left[ F_{x_{1},0}(\cdot )\otimes ...\otimes F_{x_{k},0}(\cdot )\Psi _{N}(\cdot , z)\right] (p_{1},...,p_{k})\right|^{2}\mathrm{d}z\\&\quad =k!\begin{pmatrix} N \\ k \end{pmatrix}\int _{\mathbb {R}^{2k}}\left|F_{\hbar _{x}}(y_{1}-x_{1})...F_{\hbar _{x}}(y_{k}-x_{k})\Psi _{N}(y)\right|^{2}\mathrm{d}y_{1}...\mathrm{d}y_{N}\\&\quad =k!\hbar ^{2k}\rho ^{(k)}_{\Psi _{N}}*\left( |F_{\hbar _{x}}|^{2}\right) ^{\otimes k}(x_{1},...,x_{k}). \end{aligned}$$

which gives (3.4). The proof of (3.5) is similar. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girardot, T., Rougerie, N. Semiclassical Limit for Almost Fermionic Anyons. Commun. Math. Phys. 387, 427–480 (2021). https://doi.org/10.1007/s00220-021-04164-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04164-1

Navigation