Skip to main content
Log in

Normal density earth models

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Резюме

Выве¶rt;ены мо¶rt;елu рaсnре¶rt;еленuя nлоmносmu блuзкuе мо¶rt;елuPREM (m. нaз. нормaльные мо¶rt;елu nлоmносmu), внещнеегрaвumaцuонное nоле коmорых u¶rt;енmuчно совna¶rt;aеm с нормaльнымuгрaвumaцuонным nолем Землu. Поверхносmв Землu annроксuмuруеmся в рaбоmе эллunсоu¶rt;ом врaщенuя. Дuнaмuческое сжamuе нормaльныь мо¶rt;елеŭ сосmaвляеm H==0.003 273 994. Из множесmвa выве¶rt;енных нормaльных мо¶rt;елеŭ рекомен¶rt;уеmся мо¶rt;ельHME2. В кaчесmве anрuорноŭ оценкu нормaльных мо¶rt;елеŭ nлоmносmu былa uслnользовaнa сре¶rt;няя рa¶rt;uaльно сuммеmрuческaя мо¶rt;ельPREM. Пре¶rt;лaгaеmця мо¶rt;uфuкaцuя эmоŭ мо¶rt;елu nо¶rt; нaзвaнuемPREM-E2.

Summary

Models of the Earth's density, close to thePREM model, have been derived, they reproduce the external normal gravitational field of the Earth and its dynamic flattening, and are referred to as normal density models. The Earth's surface is approximated by an ellipsoid of the order of the flattening, or of its square. Of the group of normal models sgtisfying the solution of the inverse problem, the normal density modelHME2 is recommended. The spherically symmetric density modelPREM, which was corrected in the course of solving the inverse problem, thus creating the modifiedPREM-E2 model, was used as the a priori information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Abramovitz, I. A. Stegun: Handbook of Mathematical Functions. Dover Publ., N. Y., 1970.

    Google Scholar 

  2. K. Arnold, D. Schoeps: Lateral inhomogeneities of density in the interior of the earth. Gerl. Beitr. Geoph., 93 (1984) 3, 185.

    Google Scholar 

  3. G. E. Backus, J. E. Gilbert: The resolving power of gross earth data. Geoph. J. R. astr. Soc., 16 (1968), 169.

    Article  Google Scholar 

  4. F. Birch: Density and composition of mantle and core. J. Geoph. Res., 69, (1964), 4377.

    Article  Google Scholar 

  5. M. Burša: Luni-solar precession constant and accuracy of the earth's principal moments of inertia. Studia geoph. et geod., 26 (1982), 107.

    Article  Google Scholar 

  6. M. Burša, Z. Šíma: Equatorial flattening and principal moments of inertia of the earth. Studia geoph. et geod., 28 (1984), 9.

    Article  Google Scholar 

  7. J. W. Dettman: Mathematical methods in Physics and Technics. Mc Graw-Hill, N. Y. 1962.

    Google Scholar 

  8. A. M. Dziewonski, Don L. Anderson: Preliminary reference Earth model. Phys. Earth Planet. Inter., 25 (1981), 297.

    Article  Google Scholar 

  9. A. M. Dziewonski: Mapping the lower mantle: determination of lateral heterogeneity inP velocity up to degree and order 6. J. Geoph. Res., 89 (1984), No. B7, 5929.

    Article  Google Scholar 

  10. J. N. Franklin: Well-posed stochastic extensions of ill-posed linear problems. J. Math. Anal. Appl., 31 (1970), 682.

    Article  Google Scholar 

  11. D. D. Jackson: Interpretation of inaccurate, insufficient and inconsistent data. Geoph. J. R. astr. Soc., 28 (1972), 97.

    Article  Google Scholar 

  12. R. James, Z. Kopal: The equilibrium figures of the earth and major planets. Icarus, 1 (1963), 442.

    Article  Google Scholar 

  13. K. M. Kartvelišvili: Planetary density model and normal gravity field of the earth. Results of researches on the intern. geophys. problems, Nauka, Moscow 1982.

    Google Scholar 

  14. M. A. Khan: Geodynamical and geodetic consistency tests of earth density models. Phys. Earth Planet. Inter., 28 (1982), 291.

    Article  Google Scholar 

  15. Z. Kopal, P. Lanzano: Third-order Clairaut equation for a rotating body of arbitrary density and its application to marine geodesy. Naval Res. Lab. Washington DC, Rep. No 7801, 1974.

    Google Scholar 

  16. K. Lambeck: Lateral density anomalies in the mantle. J. Geoph. Res., 81 (1976), 6333.

    Article  Google Scholar 

  17. F. J. Lerch, S. M. Klosko, R. E. Laubscher, C. A. Wagner: Gravity model improvement using Geos 3 (GEM9 and 10). J. Geoph. Res., 84 (B8), 1979, 3897.

    Article  Google Scholar 

  18. H. Moritz: Ellipsoidal mass distribution. Ohio State Univ., Rep. No 206, Ohio 1973.

    Google Scholar 

  19. S. M. Nakiboglu: Hydrostatic theory of the earth and its mechanical implications. Phys. Earth Planet. Inter., 28 (1982), 302.

    Article  Google Scholar 

  20. K. Pěč, Z. Martinec: Constraints to the three-dimensional non-hydrostatic density distribution in the earth. Studia geoph. et geod., 28 (1984), 364.

    Article  Google Scholar 

  21. K. Pěč, Z. Martinec: Expansion of geoid heights into a spherical harmonic series. Studia geoph. geod., 26 (1982), 115.

    Article  Google Scholar 

  22. M. Pick: Gravity potential of the normal body in the outer and inner space. Studia geoph. geod., 22 (1978), 23.

    Article  Google Scholar 

  23. Project MERIT standards. U. S. Naval observatory, Washington 1983.

  24. K. Rektorys: Variational methods. Reidel Co., Dordrecht-Boston 1977.

    Google Scholar 

  25. Y. A. Tarakov, T. N. Čerevko: Large-scale density heterogeneities in the mantle. Phys. Earth Planet. Inter., 25 (1981), 390.

    Article  Google Scholar 

  26. A. Tarantola, B. Valette: Generalised non linear inverse problems solved using the least squares criterion. Rev. Geoph. Space Phys., 20 (1982), 219.

    Article  Google Scholar 

  27. C. C. Tscherning: Some simple methods for the unique assignment of a density distribution to a harmonic function. Ohio State Univ., Dept. geod. Sci., Rep. No 213, Columbus, Ohio, 1974.

  28. R. A. Wiggins: The general linear inverse problem: Implication of surface waves and free oscillations for earth structure. Rev. Geoph. Space Phys., 10 (1972), 215.

    Article  Google Scholar 

  29. J. H. Woodhouse, A. D. Dziewonski: Mapping the upper mantle: Three-dimensional modeling of earth structure by inversion of seismic waveforms. J. Geoph. Res., 89 (1984), No B7, 5953.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinec, Z., Pěč, K. Normal density earth models. Stud Geophys Geod 30, 124–147 (1986). https://doi.org/10.1007/BF01644373

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01644373

Keywords

Navigation