Skip to main content
Log in

Constraints to the three-dimensional non-hydrostatic density distribution in the earth

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Резюме

Рaссмamрuвaюmся своŭсmвa рaсnре¶rt;еленuя nлоmносmu внуmрu Землu. Выве¶rt;енa сuсmемa условuŭ, о

рaнuчuвaющuх возможные знaченuя naрaмеmров nлоmносmноŭ мо¶rt;елu; сuсmемa включaеm Сmоксовы naрaмеmры

рaвumaцuонно

о nоля u naрaмеmры оnuсывaющuе фu

уру Землu. Плоmносmнaя мо¶rt;ель, naрaмеmры коmороŭ у¶rt;овлеmворяюm эmuм о

рaнuчuвaющuм условuям, nозволяеm nрово¶rt;umь фuзuческую uнmерnреmaцuю mонкоŭ сmрукmуры

рaвumaцuонно

о nоля u фu

уры Землu. Выве¶rt;ены maкже ¶rt;оnолнumельные условuя, нaклa¶rt;ывaющuеся нa сре¶rt;нюю сферuческую мо¶rt;ель nлоmносmu, коmорые обесnечuвaюm объе¶rt;uненuе сре¶rt;неŭ сферuческоŭ мо¶rt;елu с mрехмерноŭ nлоmносmноŭ мо¶rt;елью.

Summary

The paper is concerned with the properties of a density distribution within the Earth. A system of density parameter constraints involving Stokes' coefficients of the gravity field and the parameters describing the Earth's figure is derived. A density model, whose parameters fit these constraints, accounts for the fine structure of the gravity field and Earth's figure. Additional condition imposed on the average spherical density model are derived; they guarantee that the average spherical model is compatible with the 3-D density model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Abramowitz, I. A. Stegun: Handbook of Mathematical Functions. Dover Publ., N.Y., 1970.

    Google Scholar 

  2. J. Arkani-Hamed: Lateral Variations of Density in the Mantle. Geoph. J., 20 (1970), 431.

    Article  Google Scholar 

  3. G. Balmino, K. Lambeck, W. M. Kaula: A Spherical Harmonic Analysis of the Earth's Topography. J. Geoph. Res., 78 (1973), 478.

    Article  Google Scholar 

  4. F. Birch: Elasticity and Constitution of the Earth's Interior. J. Geoph. Res., 57 (1952), 227.

    Article  Google Scholar 

  5. F. Birch: Density and Composition of Mantle and Core. J. Geoph. Res., 69 (1964), 4377.

    Article  Google Scholar 

  6. M. H. P. Bott: The Mantle Transition Zone as Possible Source of Global Gravity Anomalies. Earth planet. Sci. Lett., 11 (1971), 28.

    Article  Google Scholar 

  7. K. E. Bullen: Standard Earth Model Requirements in Respect of Density and Rigidity in the Inner Core. Phys. Earth Planet. Inter., 9 (1974), 41.

    Article  Google Scholar 

  8. K. E. Bullen: The Earth's Density. Chapman and Hall, London 1975.

    Book  Google Scholar 

  9. B. H. Chowitz: Modern Geodetic Earth Reference Models. EOS, Trans. Am. Geoph. Union, 62 (1981), 65.

    Article  Google Scholar 

  10. J. S. Derr: Internal Structure of the Earth Inferred from Free Oscillations. J. Geoph. Res., 74 (1969), 5205.

    Article  Google Scholar 

  11. A. M. Dziewonski, Don L. Anderson: Preliminary Reference Earth Model. Phys. Earth Planet. Inter., 25 (1981), 297.

    Article  Google Scholar 

  12. A. R. Edmonds: Angular Momentum in Quantum Mechanics. Princeton Univ. Press, Princeton 1960.

    Google Scholar 

  13. E. M. Gaposchkin: Global Gravity Field to Degree and Order 30 from GEOS 3 Satellite Altimetry and Other Data. J. Geoph. Res., 85 (B12) (1980), 7221.

    Article  Google Scholar 

  14. F. Hopfner: Figure der Erde, Dichte und Druck im Erdinnern. In: Handbuch der Geophysik I, B. Gutenberg (editor), Berlin 1936.

  15. H. Jeffreys: On the Hydrostatic Theory of the Figure of the Earth. Geoph. J. Roy. Astr. Soc., 8 (1963), 196.

    Article  Google Scholar 

  16. H. S. Jones: Dimensions and Rotation. In: G. P. Kuiper (editor), The Earth as a Planet, Univ. Chicago Press, 1954.

  17. W. D. Kahn, S. M. Klosko, W. T. Wells: Mean Gravity Anomalies from a Condition of Apollo/ATS-6 and GEOS-3/ATS-6 SST Tracking Campaigns. NASA Tech. Mem. 82120, Goddard Space Flight Center, Greenbelt 1981, 47.

  18. M. A. Khan: General Solution of the Problem of Hydrostatic Equilibrium of the Earth. Geoph. J. R. Astr. Soc., 18 (1969), 177.

    Article  Google Scholar 

  19. M. A. Khan: Hydrostatic Figure of the Earth Theory and Results. Goddard Space Flight Center Rep. No X-542-73, 105.

  20. M. A. Khan: Geodynamical and Geodetic Consistency Tests of Earth Density Models. Phys. Earth Planet. Inter. Od, 28 (1982), 291.

    Article  Google Scholar 

  21. Z. Kopal: The Effects of Convection in the Mantle mn the Gravitational Field on the Earth. In: The Use of Artificial Satellites for Geodesy, pp. 400-408, ed. Veis, 6, North Holland, Amsterdam.

  22. K. Lambeck: Lateral Density Anomalies in the Mantle. J. Geoph. Res., 81 (1976), 6333.

    Article  Google Scholar 

  23. K. Lambeck, R. Coleman: The Earth's Shape and Gravity Field: A Report of Progress from 1958 to 1982. Geoph. J.R. astr. Soc., 74 (1983), 25.

    Article  Google Scholar 

  24. F. J. Lerch, S. M. Klosko, R. E. Laubscher, C. A. Wagner: Gravity Model Improvement Using Geos 5 (GEM 9 and 10). J. Geoph. Res., 84 (B8) (1979), 3897.

    Article  Google Scholar 

  25. F. J. Lerch, S. M. Klosko, G. B. Patel: A Refined Gravity Model from Lageos (GEM-L2). Geoph. Res. Lett., 9 (1982), 1263.

    Article  Google Scholar 

  26. H. Moritz: Ellipsoidal Mass Distribution. Ohio State Univ. Dept. Geod. Sci. Rep. No 206.

  27. S. M. Nakiboglu: Hydrostatic Theory of the Earth and Its Mechanical Implications. Phys. Earth Planet. Inter., 28 (1982), 302.

    Article  Google Scholar 

  28. K. Pěč, Z. Martinec: Expansion of Geoid Heights into a Spherical Harmonic Series. Studia geoph. et geod., 26 (1982), 115.

    Article  Google Scholar 

  29. K. Pěč, Z. Martinec: Expansion of Geoid Heights Over a Triaxial Earth's Ellipsoid into a Spherical Harmonic Series. Studia geoph. et geod., 27 (1983), 217.

    Article  Google Scholar 

  30. F. Press: Earth Models Obtained from Monte Carlo Inversion. J. Geoph. Res., 73 (1968), 5223.

    Article  Google Scholar 

  31. C. Wang: A Simple Earth Model. J. Geoph. Res., 77 (1972), 4318.

    Article  Google Scholar 

  32. E. D. Williamson, L. H. Adams: Density Distribution in the Earth. J. Wash. Sci., 13 (1923), 413.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pěč, K., Martinec, Z. Constraints to the three-dimensional non-hydrostatic density distribution in the earth. Stud Geophys Geod 28, 364–380 (1984). https://doi.org/10.1007/BF01642990

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01642990

Keywords

Navigation