Skip to main content
Log in

Innervation pattern and sensory supply of the midleg ofSchistocerca gregaria (Insecta, Orthopteroidea)

  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

InSchistocerca gregaria the course and branching pattern of the main leg nerve (N5) and the distribution and innervation of the various types of receptors of the trochanter and more distal leg segments were traced by backfilling with CoCl2. This paper aims to give a detailed description of the peripheral nervous system of the midleg of locusts. Certain fields of leg receptors are innervated by individual nerve branches. This facilitates the description of the innervation pattern of the leg and avoids confusion due to variable branching patterns of nerves in different individuals. A suggestion for the naming of leg nerves is presented. In addition, this work gives an overview of the sensory supply of the midleg, and of the number, location and distribution of the various receptor types which are found in the different leg segments. On each midleg including the coxa ofS. gregaria, approximately 1500–2000 hair sensilla, four hair plates, four rows of hairs and about 320 pulvillar basiconic and pulvillar canal sensilla are located. A total number of about 130 campaniform sensilla are arranged in 14 sensilla fields. Another 16–19 sensilla of this type are found at the base of the tibial spines and 11 single campaniform sensilla are distributed on the tibia and tarsus. At least 12 multipolar receptor groups and single receptor cells are situated in the joints between the femur, the tibia and the tarsal segments. The number, location and arrangement of the receptors of the five chordotonal organs of the legs and their nervous supply have been revealed in wholemount preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altman JS, Tyrer NM (1980) Filling selected neurons with cobalt through cut axons. In: Neuroanatomical techniques in insect nervous system. Strausfeld NJ, Miller TA (eds). Springer, New York Heidelberg Berlin, pp 373–402

    Google Scholar 

  • Autrum HJ (1941) Über Gehör- und Erschütterungssinn bei Locustiden. Z Vergl Physiol 28:580–637

    Google Scholar 

  • Bacon JP, Altman JS (1977) A silver intensification method for cobalt-filled neurons in wholemount preparations. Brain Res 138:359–363

    Google Scholar 

  • Ball EE, Ho RK, Goodman CS (1985) Development of neuromuscular specificity in the grasshopper embryo: Guidance of motoneuron growth cones by muscle pioneers. J Neurosci 5:1808–1819

    Google Scholar 

  • Bässler U (1977) Sensory control of leg movement in the stick insect,Carausius morosus Biol Cybern 25:61–72

    Google Scholar 

  • Bate CM (1976) Pioneer neurones in an insect embryo. Nature 260:54–56

    Google Scholar 

  • Bell PD (1980) Transmission of vibrations along plant stems: Implications for insect communication. N Y Entomol Soc 88:210–216

    Google Scholar 

  • Bentley D, Caudy M (1983) Navigation substrates for peripheral pioneer growth cones: Limb axis polarity cues, limb segment boundaries and guidepost neurons. Cold Spring Harbor Symp Quant Biol 48:573–585

    Google Scholar 

  • Bräunig P (1982) The peripheral and central nervous organization of the locust coxa-trochanteral joint. J Neurobiol 13:413–433

    Google Scholar 

  • Bräunig P (1985) Strand receptors associated with the femoral chordotonal organs of locust legs. J Exp Biol 116:331–341

    Google Scholar 

  • Bräunig P, Hustert R (1985) Actions and interactions of proprio-ceptors of the locust hind leg coxa-trochanteral joint. I. Afferent responses in relation to joint position and movement. J Comp Physiol A 157:73–82

    Google Scholar 

  • Bräunig P, Hustert R, Pflüger HJ (1981) Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts. I. Morphology, location and innervation of internal proprioceptors of pro- and metathorax and their central projections. Cell Tissue Res 216:57–77

    Google Scholar 

  • Burns MD (1974) Structure and physiology of the locust femoral chordotonal organ. J Insect Physiol 20:1319–1339

    Google Scholar 

  • Burrows M, Pflüger HJ (1986) Processing by local interneurons of mechanosensory signals involved in a leg reflex of the locust. J Neurosci 6:2764–2777

    Google Scholar 

  • Burrows M, Pflüger HJ (1988) Positive feedback loops from proprioceptors involved in leg movements of the locust. J Comp Physiol A 163:425–440

    Google Scholar 

  • Campbell JI (1961) The anatomy of the nervous system of the mesothorax ofLocusta migratoria migratorioides R & F. Proc Zool Soc, London 137:403–432

    Google Scholar 

  • Caudy M, Bentley D (1987) Pioneer growth cone behaviour at a differentiating limb segment boundary in the grasshopper embryo. Dev Biol 119:454–465

    Google Scholar 

  • Clements AN, May TE (1974) Studies on locust neuromuscular physiology in relation to glutamic acid. J Exp Biol 60:673–705

    Google Scholar 

  • Coillot JP, Boistel J (1968) Localication et description de récepteurs à l'étirement au niveau de l'articulation tibio-fémorale de la patte sauteuse du criquet,Schistocerca gregaria. J Insect Physiol 14:1661–1667

    Google Scholar 

  • Cruse H (1985) Which parameters control the leg movement of a walking insect? II. The start of the swing phase. J Exp Biol 116:357–362

    Google Scholar 

  • Debaisieux P (1938) Organes scolopidiaux des pattes d'insectes. II. Cellule 47:77–202

    Google Scholar 

  • Eibl E (1978) Morphology of the sense organs in the proximal part of the tibiae ofGryllus campestris L. andGryllus bimaculatus DeGeer (Insecta, Ensifera). Zoomorphologie 85:185–205

    Google Scholar 

  • Field LH, Pflüger HJ (1989) The femoral chordotonal organ: A bifunctional orthopteran (Locusta migratoria) sense organ? Comp Biochem Physiol 93A: 729–743

    Google Scholar 

  • Friedrich H (1929) Vergleichende Untersuchungen über die tibialen Scolopidialorgane einiger Orthopteren. Z Wiss Zool 134:84–148

    Google Scholar 

  • Grosch A, Callender F, Petersen M, Cokl A, Kalmring K (1985) Vibration receptors of larvae and of imagines in locusts: Location on the legs, central projections and physiology. In: Kalmring K, Eisner N (eds) Acoustic and vibrational communication in insects. Parey Verlag, Hamburg, pp 151–161

    Google Scholar 

  • Ho RK, Goodman CS (1982) Peripheral pathways are pioneered by an array of central and peripheral neurones in grasshopper embryos. Nature 297:404–406

    Google Scholar 

  • Hofmann T, Koch UT, Bässler U (1985) Physiology of the femoral chordotonal organ in the stick insect,Cuniculina impigra. J Exp Biol 114:207–223

    Google Scholar 

  • Hustert R (1974) Morphologie und Atmungsbewegungen des 5. Abdominalsegments vonLocusta migratoria migratorioides. Zool Jahrb Physiol 78:157–174

    Google Scholar 

  • Hustert R (1978) Segmental and interganglionic projections from primary fibres of insect mechanoreceptors. Cell Tissue Res 194:337–351

    Google Scholar 

  • Hustert R (1983) Proprioceptor responses and convergence of proprioceptive influence on motoneurones in the mesothoracic thoraco-coxal joint of locusts. J Comp Physiol A 150:77–86

    Google Scholar 

  • Hustert R, Pflüger HJ, Bräunig P (1981) Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts. III. The external mechanoreceptors: The campaniform sensilla. Cell Tissue Res 216:97–111

    Google Scholar 

  • Kendall MD (1970) The anatomy of the tarsi ofSchistocerca gregaria Forskål. Z Zeilforsch 109:112–137

    Google Scholar 

  • Keshishian H, Bentley D (1983a) Embryogenesis of peripheral nerve pathways in the grasshopper legs. I. Initial nerve pathway to the CNS. Dev Biol 96:89–102

    Google Scholar 

  • Keshishian H, Bentley D (1983b) Embryogenesis of peripheral nerve pathways in the grasshopper legs. II. The major nerve routes. Dev Biol 96:103–115

    Google Scholar 

  • Kühne R (1982) Neurophysiology of the vibration sense of locusts and bushcrickets: Response characteristics of single receptor units. J Insect Physiol 28:155–163

    Google Scholar 

  • Laurent G (1987) Parallel effects of joint receptors on motor neurones and intersegmental interneurones in locusts. J Comp Physiol A 160:341–353

    Google Scholar 

  • Laurent G, Burrows M (1988) Direct excitation of nonspiking local interneurones by exteroceptors underlies tactile reflexes in the locust. J Comp Physiol A 162:563–572

    Google Scholar 

  • Laurent G, Hustert R (1988) Motor neuronal receptive fields delimit patterns of motor activity during locomotion of the locust. J Neurosci 8:4349–4366

    Google Scholar 

  • Mücke A, Lakes R (1988) Darstellung von Sinnesorganen und peripheren Nerven bei Insekten. Biol Zeit 18:58–61

    Google Scholar 

  • Nijenhuis ED, Dresden D (1955) On the topographical anatomy of the nervous system of the mesothoracic leg of the american cockroach (Periplaneta americana). I. Proc K Ned Akad Wet 58:121–130

    Google Scholar 

  • Pflüger HJ (1980) The function of hair sensilla on the locust's leg: The role of tibial hairs. J Exp Biol 87:163–175

    Google Scholar 

  • Pflüger HJ, Bräunig P, Hustert R (1981) Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts. II. The external mechanoreceptors: Hair plates and tactile hairs. Cell Tissue Res 216:79–96

    Google Scholar 

  • Pitman RM, Tweedle CD, Cohen MJ (1972) Branching of central neurons: Intracellular cobalt injection for light and electron microscopy. Science 176:412–414

    Google Scholar 

  • Richard G (1950) L'innervation et les organes sensoriels de la patte du termite a cou jaune (Calotermes flavicollis F) Ann Sci Nat Zool 11:65–83

    Google Scholar 

  • Schnorbus H (1971) Die subgenualen Sinnesorgane vonPeriplaneta americana: Histologie und Vibrationsschwellen. Z Vergl Physiol 71:14–48

    Google Scholar 

  • Seyfarth EA, Eckweiler W, Hammer K (1985) Proprioceptors and sensory nerves in the leg of a spider,Cupiennius salei (Arachnidea, Araneida). Zoomorphology 105:190–196

    Google Scholar 

  • Snodgrass RE (1929) The thoracic mechanism of a grasshopper and its antecedents. Smithson Misc Coll 82:1–111

    Google Scholar 

  • Theophilidis G, Burns MD (1979) A muscle tension receptor in the locust leg. J Comp Physiol A 131:247–254

    Google Scholar 

  • Williamson R, Burns MD (1978) Multiterminal receptors in the locust mesothoracic leg. J Insect Physiol 24:661–666

    Google Scholar 

  • Young D (1970) The structure and function of a connective chordotonal organ in the cockroach leg. Phil Trans R Soc London 256:401–428

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mücke, A. Innervation pattern and sensory supply of the midleg ofSchistocerca gregaria (Insecta, Orthopteroidea). Zoomorphology 110, 175–187 (1991). https://doi.org/10.1007/BF01633002

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01633002

Keywords

Navigation