Skip to main content
Log in

The structure of the sea lilyCalamocrinus diomedae, with special reference to the articulations, skeletal microstructure, symbiotic bacteria, axial organs, and stalk tissues (Crinoida, Millericrinida)

  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

Calamocrinus diomedae was collected in deep water in the eastern Pacific. The skeleton and soft tissues were studied by light microscopy and by scanning and transmission electron microscopy. The skeleton of the arms and pinnules was unusual in lacking any galleried stereom; thus the ligaments as well as the muscles inserted on labyrinthic stereom. Therefore, the type of skeletal microstructure may not always be a sure guide to where the ligaments and muscles insert, and crinoid paleontologists should use caution when reconstructing soft parts from fossil skeletons. Contrary to the original species description, the skeleton of the theca apparently includes no infrabasal ossicles, andC. diomedae is monocyclic like other millericrinid sea lilies. Although many of the soft tissues resemble those of other crinoids, there are several exceptional features. The visceral mass within the theca includes not only a glandular axial organ typical of crinoids generally, but also what appears to be a second axial organ of the eleutherozoan type; dual axial organs have been seen before only in isocrinid sea lilies. The gut contents include partially digested crustacean prey, including some calanoid copepods. The soft tissues of the axial cord of the stalk comprise a haemal vessel, an aboral extension of the glandular axial organ, aboral coelomic extensions of the chambered organ, coelomic nerves, stalk nerves, an inconspicuous central through-going ligament, and aggregations of cells in each radial sector. Spherical bodies filled with rodshaped symbiotic bacteria are embedded in the soft connective tissues of the arms and pinnules. Possible chemosynthetic and bioluminescent roles for these bacteria are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agassiz A (1890) Notice ofCalamocrinus diomedae, a new stalked crinoid from the Galapagos, dredged by the U.S. Fish Commission steamer “Albatross.” Bull Mus Comp Zool Harvard 20:165–167

    Google Scholar 

  • Agassiz A (1892)Calamocrinus diomedae, a new stalked crinoid; with notes on the apical system and the homologies of echinoderms. Mem Mus Comp Zool Harvard 17 (2): 1–96

    Google Scholar 

  • Bachmann S, Goldschmid A (1978) Fine structure of the axial complex ofSphaerechinus granularis (Lam.) (Echinodermata: Echinoidea). Cell Tissue Res 193:107–123

    Google Scholar 

  • Balser EJ, Ruppert EE (1989) Organisation and ultrastructure of the axial complex ofDavidaster rubiginosa andD. discoidea (Crinoidea, Comatulida). Am Zool 29:116A

    Google Scholar 

  • Bargmann W, Hehn GV (1968) Über das Axialorgan (“mysterious gland”) vonAsterias rubens L. Z Zellforsch 88:262–277

    Google Scholar 

  • Bather FA (1908)Ptilocrinus antarcticus n. sp., a crinoid dredged by the Belgian Antarctic Expedition. Bull Acad R Sci Belg 1908:296–299

    Google Scholar 

  • Bourseau JP, Ameziane-Cominardi N, Roux M (1987) Un crinoïde pédonculé nouveau (Échinodermes), représentant actuel de la famille jurassique des Hemicrinidae:Gymnocrinus richeri nov. sp. des fonds bathyaux de Nouvelle-Caledonie (S.W. Pacifique). C R Acad Sci Paris (Sér III) 305:595–599

    Google Scholar 

  • Brehm P, Morin JG (1977) Localization and characterization of luminescent cells inOphiopsila californica andAmphipholis squamata (Echinodermata: Ophiuroidea). Biol Bull 152:12–25

    Google Scholar 

  • Breimer A (1978) General morphology: recent crinoids. In: Moore RC, Teichert C (eds) Treatise on invertebrate paleontology, Part T, Echinodermata 2, vol 1. Geological Society of America, Boulder, Colorado, pp 9–58

    Google Scholar 

  • Carpenter PH (1884) Report upon the Crinoidea collected during the voyage of H.M.S. Challenger during the years 1873–1876. Part I — General morphology, with descriptions of the stalked crinoids. Challenger Reports, Part XXXII Zoology 11:1–422

    Google Scholar 

  • Clark AH (1907) A new species of stalked crinoid (Ptilocrinus pinnatus) from the Pacific coast, with a note onBathycrinus. Proc U S Natl Mus 32:551–554

    Google Scholar 

  • Codd GA, Marsden WJN (1984) The carboxysomes (polyhedral bodies) of autotrophic prokaryotes. Biol Rev 59:389–422

    Google Scholar 

  • Cuénot L (1948) Anatomie, éthologie et systématique des échinodermes. In: Grassé PP (ed) Traité de zoologie, XL Échinodermes, stomochordés, prochordés. Masson, Paris, pp 3–272

    Google Scholar 

  • Dilly PN (1973) The enigma of coloration and light emission in deep-sea animals. Endeavour 115:25–29

    Google Scholar 

  • Donovan SK (1984) Stem morphology of the recent crinoidChladocrinus (Neocrinus) decorus. Palaeontology 27:825–841

    Google Scholar 

  • Donovan SK (1989) The improbability of a muscular crinoid column. Lethaia 22:307–315

    Google Scholar 

  • Féral JP (1980) Cuticle et bactéries associées des épidermes digestif et tégumentaire deLeptosynapta gallienni (Herapath) (Holoth-uroidea: Apoda) — Primières données. In: Jangoux M (ed) Echinoderms: present and past. Balkema, Rotterdam, pp 285–290

    Google Scholar 

  • Gislén T (1924) Echinoderm studies. Zool Bidr Uppsala 9:1–330

    Google Scholar 

  • Gould-Somero M, Holland L (1975) Oocyte differentiation inUrechis caupo (Echiura): a fine structural study. J Morphol 147:475–505

    Google Scholar 

  • Grimmer JC, Holland ND (1979) Haemal and coelomic circulatory systems in the arms and pinnules ofFlorometra serratissima (Echinodermata: Crinoidea). Zoomorphologie 94:93–109

    Google Scholar 

  • Grimmer JC, Holland ND (1990) The structure and biology of a sessile, stalkless crinoid,Holopus rangii. Acta Zool (Stockholm) 71:61–67

    Google Scholar 

  • Grimmer JC, Holland ND, Kubota H (1984 a) The fine structure of the stalk of the pentacrinoid larva of a feather star,Comanthus japonica (Echinodermata: Crinoidea). Acta Zool (Stockholm) 65:41–58

    Google Scholar 

  • Grimmer JC, Holland ND, Messing CG (1984 b) Fine structure of the stalk of the bourgueticrinid sea lilyDemocrinus conifer (Echinodermata: Crinoidea). Mar Biol 81:163–176

    Google Scholar 

  • Grimmer JC, Holland ND, Hyami I (1985) Fine structure of the stalk of an isocrinid sea lily (Metacrinus rotundas) (Echinodermata, Crinoidea). Zoomorphology 105:39–50

    Google Scholar 

  • Hendler G (1984) Brittlestar color-change and phototaxis (Echinodermata: Ophiuroidea: Ophiocomidae). Mar Ecology (Naples) 5:379–401

    Google Scholar 

  • Hendler G, Byrne M (1987) Fine structure of the dorsal arm plate ofOphiocoma wendti: evidence for a photoreceptive system (Echinodermata, Ophiuroidea). Zoomorphology 107:261–272

    Google Scholar 

  • Herring PJ (1974) New observations on the bioluminescence of echinoderms. J Zool London 172:401–418

    Google Scholar 

  • Holland ND (1968) The histochemistry and site of synthesis of the globules in the chambered organ ofAntedon mediterranea (Echinodermata, Crinoidea). Pubbl St Zool Napoli 36:264–266

    Google Scholar 

  • Holland ND (1970) The fine structure of the axial organ of the feather starNemaster rubiginosa (Echinodermata: Crinoidea). Tissue Cell 2:625–636

    Google Scholar 

  • Holland ND (1991) Crinoidea. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates, VI. Echinoderms and lophophorates. Blackwell-Boxwood, Palo Alto and Pacific Grove, California, pp 247–299

    Google Scholar 

  • Holland ND, Grimmer JC (1981) Fine structure of the cirri and a possible mechanism for their motility in stalkless crinoids (Echinodermata). Cell Tissue Res 214:207–217

    Google Scholar 

  • Holland ND, Nealson KH (1978) The fine structure of the echinoderm cuticle and the subcuticular bacteria of echinoderms. Acta Zool (Stockholm) 59:169–185

    Google Scholar 

  • Hyman LH (1955) The invertebrates, IV. Echinodermata. McGraw-Hill, New York

    Google Scholar 

  • LaHaye CA, Holland ND (1984) Electron microscopic studies of the digestive tract and absorption from the gut lumen of a feather star,Oligometra serripinna (Echinodermata). Zoomorphology 104:252–259

    Google Scholar 

  • Leclerc M, Luquet G (1989) In vitro effect of silica on axial organ cells in the presence and absence of mitogens. Cell Biol Int Rept 13:447–452

    Google Scholar 

  • Ludwig H (1877) Zur Anatomie desRhizocrinus lofotensis M. Sars. Z Wiss Zool 29:47–76

    Google Scholar 

  • Macurda DB, Meyer DL (1975) The microstructure of the crinoid endoskeleton. Univ Kansas Paleontol Contrib Paper 74:1–22

    Google Scholar 

  • Macurda DB, Meyer DL (1976 a) The identification and interpretation of stalked crinoids (Echinodermata) from deep-water photographs. Bull Mar Sci 26:205–215

    Google Scholar 

  • Macurda DB, Meyer DL (1976b) The morphology and life habits of the abyssal crinoidBathycrinus aldrichianus Wyville Thomson and its paleontological implications. J Paleontol 50:647–667

    Google Scholar 

  • Macurda DB, Meyer DL, Roux M (1978) The crinoid stereom. In: Moore RC, Teichert C (eds) Treatise on invertebrate paleontology, Part T, Echinodermata 2, vol 1. Geological Society of America, Boulder, Colorado, pp 217–228

    Google Scholar 

  • Moore RC (1978) Glossary of crinoid morphological terms. In: Moore RC, Teichert C (eds) Treatise on invertebrate paleontology, Part T, Echinodermata 2, vol 1. Geological Society of America, Boulder, Colorado, pp 229–242

    Google Scholar 

  • Perrier E (1886) Mémoire sur l'organisation et le développement de la comatule de la Méditerranée (Antedon rosacea Linck). Nouv Arch Mus Hist Natur Paris (Sér 2) 9:53–348

    Google Scholar 

  • Rasmussen HW (1978a) Articulata. In: Moore RC, Teichert C (eds) Treatise on invertebrate paleontology, Part T, Echinodermata 2, vol 3. Geological Society of America, Boulder, Colorado, pp 813–928

    Google Scholar 

  • Rasmussen HW (1978b) Evolution of articulate crinoids. In: Moore TC, Teichert C (eds) Treatise on invertebrate paleontology, Part T, Echinodermata 2, vol 1. Geological Society of America, Boulder, Colorado, pp 302–316

    Google Scholar 

  • Reichensperger A (1905) Zur Anatomie vonPentacrinus decorus Wy. Th. Bull Mus Comp Zool Harvard Univ 46:169–200

    Google Scholar 

  • Roux M (1978) Ontogenèse, variabilité et évolution morphofonctionelle du pédoncule et du calice chez les Millericrinida (Échinodermes, Crinoïdes). Géobios 11:213–241

    Google Scholar 

  • Roux M (1980) Les articulations du pédoncule des Hyocrinidae (échinodermes, crinoïdes pédonculés): intérêt systématique et conséquences. Bull Mus Natl Hist Nat Paris (Sér 4) (Sect A) 2:31–57

    Google Scholar 

  • Roux M (1985) Les crinoïdes pédonculés (Échinodermes) de l'Atlantique N.E.: Inventaire, écologie et biogéographie. In: Laubier L, Monniot C (eds) Peuplements profonds du Golfe de Gascogne. IFREMER, Brest, pp 479–489

    Google Scholar 

  • Roux M (1987) Evolutionary ecology and biogeography of recent stalked crinoids as a model for the fossil record. Echinoderm Studies 2:1–53

    Google Scholar 

  • Roux M (1990) Découverte d'une nouvelle espèce du genrePtilocrinus (Échinodermes, Crinoïdes pédonculés) au large de TerreNeuve. Can J Zool 68:1132–1136

    Google Scholar 

  • Sevastopulo GD, Keegan JB (1980) A technique for revealing the stereom microstructure of fossil crinoids. Palaeontology 23:749–756

    Google Scholar 

  • Shively JM (1974) Inclusion bodies of prokaryotes. Ann Rev Microbiol 28:167–188

    Google Scholar 

  • Simms MJ (1988) The phylogeny of post-Palaeozoic crinoids. In: Paul CRC, Smith AB (eds) Echinoderm phylogeny and evolutionary biology. Oxford Univ Press, Oxford, pp 269–284

    Google Scholar 

  • Simms MJ (1989) Columnal ontogeny in articulate crinoids and its implications for their phylogeny. Lethaia 22:61–68

    Google Scholar 

  • Tuzet O, Manier JF (1961) Recherches sur l'organe axial de la comatule:Antedon mediterranea Lmk (Échinoderme-Pelmatozoaire). C R Assoc Anat 46:775–780

    Google Scholar 

  • Ubaghs G (1978) Classification of the echinoderms. In: Moore RC, Teichert C (eds) Treatise on invertebrate paleontology, Part T, Echinodermata 2, vol. 1. Geological Society of America, Boulder, Colorado, pp 359–401

    Google Scholar 

  • Wilkie IC (1984) Variable tensility in echinoderm collagenous tissues: a review. Mar Behav Physiol 11:1–34

    Google Scholar 

  • Wyville-Thomson C (1876) Notice of new living crinoids belonging to the Apiocrinidae. J Linn Soc London Zool 13:47–55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holland, N.D., Grimmer, J.C. & Wiegmann, K. The structure of the sea lilyCalamocrinus diomedae, with special reference to the articulations, skeletal microstructure, symbiotic bacteria, axial organs, and stalk tissues (Crinoida, Millericrinida). Zoomorphology 110, 115–132 (1991). https://doi.org/10.1007/BF01632868

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01632868

Keywords

Navigation