Skip to main content
Log in

On the recombination behaviour of iron in moderately boron-doped p-type silicon

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The recombination lifetime and diffusion length of intentionally iron-contaminated samples were measured by the Surface Photo Voltage (SPV) and the Elymat technique. The lifetime results from these techniques for intentionally iron-contaminated samples were analysed, in particular for the aspect of the injection-level dependency of recombination lifetime. Based on theoretical considerations, a method for the analysis of deep-level parameters combining constant photon flux SPV and Elymat measurements has been developed. This method is based on a detailed numerical analysis of the Elymat technique, including the Dember electric field, the characteristics of the laser beam, the transport parameters of the semiconductor and multilevel Shockley-Read-Hall (SRH) recombination kinetics. The results of the numerical simulation are applied to the analysis of recombination lifetime measurements on intentionally iron-contaminated samples. We compared numerical simulations and experimental results from SPV and Elymat for p-type samples using the classical acceptor level atE v +0.1 eV and the donor level of FeB pairs atE c -0.3 eV as recombination centre. Better consistency in the interpretation of the results has been found in the doping range 1014–1016 cm−3 supposing theE c -0.3 eV level as predominant recombination centre. An attempt to extract the electron and hole capture cross-sections for this defect is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Zoth, W. Bergholz: J. Appl. Phys.67, 6764 (1990)

    Google Scholar 

  2. L. Jastrzebski, W. Henley, C.J. Nuese: Solid State Technol.35, 27 (1992)

    Google Scholar 

  3. W.B. Henley, L. Jastrzebski, N.F. Haddad: Proc. Electrochem. Soc.93-2, 476 (1993)

    Google Scholar 

  4. W.H. Rieger:Proc. Millipore Symp., Munich (1990)

  5. F. Shimura, T. Okui, T. Kusama: J. Appl. Phys.67, 7168 (1990)

    Google Scholar 

  6. G. Ferenczi, T. Pavelka, P. Tütto, L. Köster: Solid State Phenom.32-33, 609 (1993)

    Google Scholar 

  7. C.T. Sah, R.N. Noyce, W. Shockley: IRE Proc.1228 (1957)

  8. K. Graff, H. Pieper: J. Electrochem. Soc.128, 669 (1981)

    Google Scholar 

  9. S.D. Brotherton, P. Bradley, A. Gill: J. Appl. Phys.57, 1941 (1985)

    Google Scholar 

  10. H. Nakashima, T. Sadoh: Proc. Mater. Res. Soc.262, 555 (1992)

    Google Scholar 

  11. S. Ghatnekar-Nilsson, M. Klevermann, P. Emanunuelsson, H.G. Grimmeis: Semicond. Sci. Technol.8, 1857 (1993)

    Google Scholar 

  12. W. Gehlhoff, K. Irmscher: Solid State Phenom.32-33, 219 (1993)

    Google Scholar 

  13. Y. Hayamazu, T. Hamaguchi, S. Ushio, T. Abe: J. Appl. Phys.69, 3077 (1991)

    Google Scholar 

  14. A.M. Goodman: J. Appl. Phys.32, 2550 (1961)

    Google Scholar 

  15. V. Lehmann, H. Föll: J. Electrochem. Soc.135, 2831 (1988)

    Google Scholar 

  16. S.M. Sze:Physics of Semiconductor Devices (Wiley Interscience, New York 1981) p. 87

    Google Scholar 

  17. W. Shockley, W.T. Read: Phys. Rev.87, 835 (1952)

    Google Scholar 

  18. R.N. Hall: Phys. Rev.83, 228 (1951)

    Google Scholar 

  19. W. Shockley, J.T. Last: Phys. Rev.107, 392 (1957)

    Google Scholar 

  20. C.T. Sah, W. Shockley: Phys. Rev.109, 1103 (1958)

    Google Scholar 

  21. W. Wijaranakula: J. Electrochem. Soc.140, 275 (1993)

    Google Scholar 

  22. H. Nakashima, T. Isobe, Y. Yamamoto, K. Hashimoto: Jpn. J. Appl. Phys.27, 1542 (1988)

    Google Scholar 

  23. K. Ryoo, W.E. Socha: J. Electrochem. Soc.138, 1424 (1991)

    Google Scholar 

  24. D. Walz, G. Le Carval, J.-P. Joly, G. Kamarinos: Semicond. Sci. Technol.10, 1022–33 (1995)

    Google Scholar 

  25. Silvaco Users Manual, release 2 (Silvaco International, Santa Clara, CO 1993)

  26. D.K. Schroder:Semiconductor Materials and Device Characterization (Wiley Interscience, New York 1990) pp. 424–431

    Google Scholar 

  27. M. Hourai, T. Naridomi, Y. Oka, K. Murakami, S. Sumita, N. Fujino, T. Shiraiwa: Jpn. J. Appl. Phys.27, L2361 (1988)

    Google Scholar 

  28. L. Mouche: Etude des mécanismes de contamination particulaire et métallique, des substrats de silicium en solution; Dissertation, Marseille (1994)

  29. J. Crank:Mathematics of Diffusion (Clarendon, Oxford 1957) pp. 42–61

    Google Scholar 

  30. D. Walz: Caractérisation de la contamination metallique dans le Silicium par des méthodes de duréé de vie; application au cas du fer daps le Silicium de type P. Dissertation thesis, Grenoble (1995)

  31. W. Bergholz, D. Landsmann, B. Schauberger, B. Schoepperl: Proc. Electrochem. Soc.93-15 (1993)

  32. D. Walz, J.P. Joly, R. Falster, G. Kamarinos: Jpn. J. Appl. Phys.34, 4091 (1995)

    Google Scholar 

  33. S.W. Glunz, A.B. Sproul, W. Warta, W. Wettling: J. Appl. Phys.75, 1611 (1994)

    Google Scholar 

  34. J.M. Dorkel, Ph. Lecture: Solid-State Electron.24, 821 (1981)

    Google Scholar 

  35. K.A. Adilov: Phys. Stat. Sol. (b)167, 159 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walz, D., My, J.P. & Kamarinos, G. On the recombination behaviour of iron in moderately boron-doped p-type silicon. Appl. Phys. A 62, 345–353 (1996). https://doi.org/10.1007/BF01594232

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01594232

PACS

Navigation