Skip to main content
Log in

Morse theory for some lower-C 2 functions in finite dimension

  • Published:
Mathematical Programming Submit manuscript

Abstract

Using inf-regularization methods, we prove that Morse inequalities hold for some lower-C 2 functions. For this purpose, we first recall some properties of the class of lower-C 2 functions and of their Moreau-Yosida approximations. Then, we establish, under some qualification conditions on the critical points, that it is possible to define a “Morse” index for a lower-C 2 functionf. This index is preserved by the Moreau-Yosida approximation process. We prove in particular that the Moreau-Yosida approximations are twice continuolusly differentiable around such a critical point which is shown to be a strict local minimum of the restriction off and of its approximations to some affine space. In a last step, Morse inequalities are written for Moreau-Yosida approximations and with the aid of deformation retractions we prove that these inequalities also hold for some lower-C 2 functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Attouch,Variational convergence (Pittmann, 1984).

  2. D.P. Bertsekas, “Convexification procedures and decomposition method for nonconvex optimization problems,”Journal of Optimization Theory and Applications 29 (1979) 169–197).

    Google Scholar 

  3. M.L. Bougeard, “Contribution à la théorie de Morse en dimension finie,” thèse de 3ème cycle, Université Paris-Dauphine (75775 Paris, 1978).

    Google Scholar 

  4. M.L. Bougeard,Contribution à la Théorie de Morse, Cahier Ceremade, Université Paris-Dauphine (75775 Paris, 1979).

    Google Scholar 

  5. M.L. Bougeard, “About critical points of some lowerC 2 functions,” in: C. Lemarechal, ed.,Third Franco-German Conference in Optimization (I.N.R.I.A., 78153 Le Chesnay, France, 1984) pp. 12–16.

    Google Scholar 

  6. M.L. Bougeard and J.P. Penot, “Approximation and decomposition properties of some classes of locally d.c. functions” (preprint, Université Pau, 1985).

  7. H. Brezis,Opérateurs Maximaux Monotones (Lecture Notes 5 North-Holland, 1973).

  8. F.H. Clarke, “Generalized gradients and applications,”Transactions of the American Mathematical Society 205 (1975) 247–262.

    Google Scholar 

  9. A. Douady, “Arrondissement des arêtes,” in:Séminaire Henri Cartan (Topologie Différentielle) 14 (3) (1961–62) 3.1–3.25.

    Google Scholar 

  10. I. Ekeland and J.M. Lasry, “On the number of periodic trajectories for a hamiltonian flow,”Annals of Mathematics 112 (1980) 283–319.

    Google Scholar 

  11. O. Fujiwara, “A note on differentiability of global optimal values,”Mathematics of Operations Research 10 (4) (1985) 612–618.

    Google Scholar 

  12. J.B. Hiriart-Urruty, “Generalized differentiability, duality and optimization for problems dealing with differences of convex functions,” lecture given in Groningen (preprint, Université Toulouse, 1984).

  13. R. Janin, “Sur la dualité et la sensibilité dans les problèmes de programmes mathématiques,” thèse d'état, Université Paris VI (Paris, 1974).

    Google Scholar 

  14. H. Th. Jongen, P. Jonker and F. Twilt, “Nonlinear optimization inR n, Morse theory, Chebyschev Approximation,” in:Methoden and Verfahren der Mathematischen Physik, vol. 29 (Peter Lang Verlag, Frankfurt, 1983).

    Google Scholar 

  15. H. Th. Jongen and G. Zwier, “On structural analysis in semi-infinite Optimization,” in: C. Lemarechal, ed.,Third Franco-German Conference in Optimization (I.N.R.I.A. 78153 Le Chesnay, France 1984) pp. 56–67.

    Google Scholar 

  16. H. Th. Jongen and G. Zwier, “On regular semi-infinite Optimization,” in: E.J. Anderson and A.B. Philpott, eds.,Infinite Programming, Lecture Notes in Economics and Mathematical Systems, Vol. 259 (Springer-Verlag, Berlin, 1985) pp. 53–64.

    Google Scholar 

  17. C. Malivert, “Méthode de descente sur un fermé non convexe,”Bulletin de la Société Mathématique de France 60 (1979) 113–124.

    Google Scholar 

  18. C. Malivert, J.P. Penot and M. Thera, “Minimisation d'une fonction régulière sur un fermé régulier non convexe,”Comptes Rendus de l'Académie des Sciences Paris A (1978) 1191–1193.

  19. J.P. Penot, “Sous-differentiels de fonctions numériques non convexes,”Comptes Rendus de l'Acadmie des Sciences Paris A 278 (1974) 1153–1155.

    Google Scholar 

  20. J.P. Penot, private communication (1985).

  21. A. Pommelet, “Analyse convexe et théorie de Morse,” thèse 3ème cycle, Université Paris-Dauphine, (Paris, 1982).

    Google Scholar 

  22. B.N. Pshenichny,Necessary Conditions for an Extremum (M. Dekker, New York, 1971).

    Google Scholar 

  23. R.T. Rockafellar, “Augmented Lagrangians and applications of the proximal point algorithm in convex programming,”Mathematics of Operations Research 1 (1976) 97–116.

    Google Scholar 

  24. R.T. Rockafellar, “Favorable classes of lipschitz continuous functions in subgradient optimization,” in: E. Nurminski, ed.,Progress in Nondifferentiable Optimization (I.I.A.S.A., Laxenburg, Austria, 1982) pp. 125–143.

    Google Scholar 

  25. J.T. Schwartz,Nonlinear Functional Analysis (Gordon and Breach, New York, 1969).

    Google Scholar 

  26. J.P. Vial, “Strong and weak convexity of sets and functions,”Mathematical Operations of Research 8 (1983) 231–257.

    Google Scholar 

  27. Y. Yomdin, “On functions representable as a supremum of smooth functions,”SIAM Journal of Mathematical Analysis 14 (1983) 239–246.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bougeard, M.L. Morse theory for some lower-C 2 functions in finite dimension. Mathematical Programming 41, 141–159 (1988). https://doi.org/10.1007/BF01580761

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01580761

Key words

Navigation