Skip to main content
Log in

Morse theory methods for a class of quasi-linear elliptic systems of higher order

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We develop the local Morse theory for a class of non-twice continuously differentiable functionals on Hilbert spaces, including a new generalization of the Gromoll–Meyer’s splitting theorem and a weaker Marino–Prodi perturbation type result. They are applicable to a wide range of multiple integrals with quasi-linear elliptic Euler equations and systems of higher order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  2. Bartsch, T., Szulkin, A., Willem, M.: Morse theory and nonlinear differential equations. In: Krupka, D., Saunders, D. (eds.) Handbook of Global Analysis, pp. 41–73. Elsevier, Amsterdam (2008)

    Chapter  Google Scholar 

  3. Berger, M.: Nonlinearity and Functional Analysis. Academic Press, New York (1977)

    MATH  Google Scholar 

  4. Bobylev, N.A., Burman, Y.M.: Morse lemmas for multi-dimensional variational problems. Nonlinear Anal. 18, 595–604 (1992)

    Article  MathSciNet  Google Scholar 

  5. Bott, R.: Nondegenerate critical manifold. Ann. Math. 60, 248–261 (1954)

    Article  MathSciNet  Google Scholar 

  6. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

    MATH  Google Scholar 

  7. Browder, F.E.: Nonlinear elliptic boundary value problems and the generalized topological degree. Bull. Am. Math. Soc. 76, 999–1005 (1970)

    Article  MathSciNet  Google Scholar 

  8. Browder, F.E.: Fixed point theory and nonlinear problem. Bull. Am. Math. Soc. (New Ser.) 9, 1–39 (1983)

    Article  MathSciNet  Google Scholar 

  9. Caklovic, L., Li, S.J., Willem, M.: A note on Palais-Smale condition and coercivity. Differ. Integral Equ. 3, 799–800 (1990)

    MathSciNet  MATH  Google Scholar 

  10. Carmona, J., Cingolani, S., Martínez-Aparicio, P.-J., Vannella, G.: Regularity and Morse index of the solutions to critical quasilinear elliptic systems. Commun. Partial Differ. Equ. 38(10), 1675–1711 (2013)

    Article  MathSciNet  Google Scholar 

  11. Chang, K.C.: Morse theory on Banach space and its applications to partial differential equations. Chin. Ann. Math. Ser. B 4, 381–399 (1983)

    MathSciNet  MATH  Google Scholar 

  12. Chang, K.C.: Infinite Dimensional Morse Theory and Multiple Solution Problem. Birkhäuser, Basel (1993)

    Book  Google Scholar 

  13. Chang, K.C.: Methods in Nonlinear Analysis. Springer Monogaphs in Mathematics. Springer, Berlin (2005)

    MATH  Google Scholar 

  14. Chang, K.C., Ghoussoub, H.: The Conley index and the critical groups via an extension of Gromoll–Meyer theory. Topol. Methods Nonlinear Anal. 7, 77–93 (1996)

    Article  MathSciNet  Google Scholar 

  15. Chen, C.Y., Kristensen, J.: On coercive variational integrals. Nonlinear Anal. Theory Methods Appl. 153, 213–229 (2017)

    Article  MathSciNet  Google Scholar 

  16. Cingolani, S., Degiovanni, M.: On the Poincaré–Hopf theorem for functionals defined on Banach spaces. Adv. Nonlinear Stud. 9, 679–699 (2009)

    Article  MathSciNet  Google Scholar 

  17. Cingolani, S., Degiovanni, M., Vannella, G.: Critical group estimates for nonregular critical points of functionals associated with quasilinear elliptic equations. J. Elliptic Parabol. Equ. 1, 75–87 (2015)

    Article  MathSciNet  Google Scholar 

  18. Cingolani, S., Degiovanni, M., Vannella, G.: Amann–Zehnder type results for \(p\)-Laplace problems. Ann. Mat. Pura Appl. (4) 197(2), 605–640 (2018)

    Article  MathSciNet  Google Scholar 

  19. Cingolani, S., Vannella, G.: Marino–Prodi perturbation type results and Morse indices of minimax critical points for a class of functionals in Banach spaces. Ann. Mat. 186, 155–183 (2007)

    Article  MathSciNet  Google Scholar 

  20. Dalbono, F., Portaluri, A.: Morse-Smale index theorems for elliptic boundary deformation problems. J. Differ. Equ. 253(2), 463–480 (2012)

    Article  MathSciNet  Google Scholar 

  21. Degiovanni, M.: On topological and metric critical point theory. J. Fixed Point Theory Appl. 7(1), 85–102 (2010)

    Article  MathSciNet  Google Scholar 

  22. Duc, D.M., Hung, T.V., Khai, N.T.: Morse–Palais lemma for nonsmooth functionals on normed spaces. Proc. Am. Math. Soc. 135, 921–927 (2007)

    Article  MathSciNet  Google Scholar 

  23. Duc, D.M., Hung, T.V., Khai, N.T.: Critical points of non-\(C^2\) functionals. Topol. Methods Nonlinear Anal. 29, 35–68 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Ekeland, I.: An inverse function theorem in Frechet spaces. Ann. Inst. Henri Poincaré Anal. Non Linéaire 28(1), 91–105 (2011)

    Article  MathSciNet  Google Scholar 

  25. Feckan, M.: An inverse function theorem for continuous mappings. J. Math. Anal. Appl. 185(1), 118–128 (1994)

    Article  MathSciNet  Google Scholar 

  26. Ghoussoub, N.: Duality and Perturbation Methods in Critical Point Theory. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  27. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies. Princeton University Press, Princeton (1983)

    MATH  Google Scholar 

  28. Gromoll, D., Meyer, W.: On differentiable functions with isolated critical points. Topology 8, 361–369 (1969)

    Article  MathSciNet  Google Scholar 

  29. Jiang, M.: A generalization of Morse lemma and its applications. Nonlinear Anal. 36, 943–960 (1999)

    Article  MathSciNet  Google Scholar 

  30. Krasnosel’skii, M.A.: Topological Methods in the Theory of Nonlinear Integral Equations. McMillan, New York (1964)

    MATH  Google Scholar 

  31. Lazer, A., Solimini, S.: Nontrivial solutions of operator equations and Morse indices of critical points of min-max type. Nonlinear Anal. TMA 12, 761–775 (1988)

    Article  MathSciNet  Google Scholar 

  32. Lu, G.: Corrigendum to “The Conley conjecture for Hamiltonian systems on the cotangent bundle and its analogue for Lagrangian systems” [J. Funct. Anal. 256(9):2967–3034 (2009)]. J. Funct. Anal. 261, 542–589 (2011)

    Article  MathSciNet  Google Scholar 

  33. Lu, G.: The splitting lemmas for nonsmooth functionals on Hilbert spaces I. Discret. Contin. Dyn. Syst. 33(7), 2939–2990 (2013)

    Article  MathSciNet  Google Scholar 

  34. Lu, G.: The splitting lemmas for nonsmooth functionals on Hilbert spaces II. Topol. Methods Nonlinear Anal. 44, 277–335 (2014)

    Article  MathSciNet  Google Scholar 

  35. Lu, G.: The splitting lemmas for nonsmooth functionals on Hilbert spaces. arxiv:1102.2062

  36. Lu, G.: Splitting lemmas for the Finsler energy functional on the space of \(H^1\)-curves. Proc. Lond. Math. Soc. 113(3), 24–76 (2016)

    Article  MathSciNet  Google Scholar 

  37. Lu, G.: Nonsmooth generalization of some critical point theorems for \(C^2\) functionals. Sci. Sin. Math. 46, 615–638 (2016). https://doi.org/10.1360/N012015-00375. (in Chinese)

    Article  Google Scholar 

  38. Lu, G.: Morse theory methods for quasi-linear elliptic systems of higher order. arXiv:1702.06667

  39. Lu, G.: Parameterized splitting theorems and bifurcations for potential operators. arXiv:1712.03479

  40. Lu, G.: Variational methods for Lagrangian systems of higher order, A book in progress

  41. Marino, A., Prodi, G.: Metodi perturbativi nella teoria di Morse. Boll. Un. Mat. Ital. 11, 1–32 (1975)

    MathSciNet  MATH  Google Scholar 

  42. Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Applied Mathematical Sciences, vol. 74. Springer, New York (1989)

    Book  Google Scholar 

  43. Milnor, J.: Morse Theory. Annals of Mathematical Studies, vol. 51. Princeton University Press, Princeton, NJ (1963)

  44. Morrey Jr., C.B.: Multiple Integrals in the Calculus of Variations. Reprint of the 1966 Classics in Mathematics. Springer, Berlin (2008)

    Book  Google Scholar 

  45. Morse, M.: The Calculus of Variations in the Large, vol. 18. American Mathematical Society, Colloquium Publications, Ann Arbor (1934)

    MATH  Google Scholar 

  46. Moser, J.: Minimal solutions of variational problems on a torus. Ann. Inst. Henri Poincaré 3, 229–272 (1986)

    Article  MathSciNet  Google Scholar 

  47. Motreanu, D., Motreanu, V., Papageorgiou, N.: Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems. Springer, New York (2014)

    Book  Google Scholar 

  48. Palais, R.: Morse theory on Hilbert manifolds. Topology 2, 299–340 (1963)

    Article  MathSciNet  Google Scholar 

  49. Palais, R.: Foundations of Global Non-linear Analysis, vol. 44. W. A. Benjamin, New York (1968)

    MATH  Google Scholar 

  50. Palais, R.S., Smale, S.: A generalized Morse theory. Bull. Am. Math. Soc. 70, 165–172 (1964)

    Article  MathSciNet  Google Scholar 

  51. Perera, K., Agarwal, R.P., O’Regan, D.: Morse Theoretic Aspects of \(p\)-Laplacian Type Operators. Mathematical Surveys and Monographs, vol. 161. American Mathematical Society, Providence (2010)

    Book  Google Scholar 

  52. Skrypnik, I.V.: Nonlinear Elliptic Equations of a Higher Order. Naukova Dumka, Kiev (1973). (in Russian)

    MATH  Google Scholar 

  53. Skrypnik, I.V.: Solvability and properties of solutions of nonlinear elliptic equations. J. Sov. Math. 12, 555–629 (1979)

    Article  Google Scholar 

  54. Skrypnik, I.V.: Methods for Analysis of Nonlinear Elliptic Boundary Value Problems. Translations of Mathematical Monographs, vol. 139. American Mathematical Society, Providence (1994)

    Book  Google Scholar 

  55. Smale, S.: Morse theory and a non-linear generalization of the Dirichlet problem. Ann. Math. 80, 382–396 (1964)

    Article  MathSciNet  Google Scholar 

  56. Smale, S.: On the Morse index theorem. J. Math. Mech. 14, 1049–1056 (1965)

    MathSciNet  MATH  Google Scholar 

  57. Ströhmer, G.: About the morse theory for certain vartional problems. Math. Ann. 270, 275–284 (1985)

    Article  MathSciNet  Google Scholar 

  58. Tromba, A.J.: A general approach to Morse theory. J. Differ. Geom. 12, 47–85 (1977)

    Article  MathSciNet  Google Scholar 

  59. Uhlenbeck, K.: Morse theory on Banach manifolds. J. Funct. Anal. 10, 430–445 (1972)

    Article  MathSciNet  Google Scholar 

  60. Uhlenbeck, K.: The Morse index theorem in Hilbert space. J. Differ. Geom. 8, 555–564 (1973)

    Article  MathSciNet  Google Scholar 

  61. Vakhrameev, S.A.: Critical point theory for smooth functions on Hilbert manifolds with singularities and its application to some optimal control problems. J. Sov. Math. 67, 2713–2811 (1993)

    Article  MathSciNet  Google Scholar 

  62. Vannella, G.: Morse theory applied to a \(T^2\)-equivriant problem. Topol. Methods Nonlinear Anal. 17, 41–53 (2001)

    Article  MathSciNet  Google Scholar 

  63. Viterbo, C.: Indice de Morse des points critiques obtenus par minimax. Ann. Inst. Henri Poincaré 5, 221–225 (1988)

    Article  MathSciNet  Google Scholar 

  64. Wang, Z.Q.: Equivariant Morse theory for isolated critical orbits and its applications to nonlinear problems. In: Chern, S.S (ed.) Partial Differential Equations, Proceedings of the Seventh Symposium on Differential Geometry and Differential Equations held in Tianjin, June 23–July 5, 1986. Lecture Notes in Mathematics, vol. 1306, pp. 202–221. Springer, Berlin (1988)

  65. Wasserman, G.: Equivariant differential topology. Topology 8, 127–150 (1969)

    Article  MathSciNet  Google Scholar 

  66. Wendl, C.: Lectures on Holomorphic Curves in Symplectic and Contact Geometry, math.SG. arXiv:1011.1690

  67. Zou, W.M., Schechter, M.: Critical Point Theory and Its Applications. Springer, New York (2006)

    MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to the anonymous referees for useful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangcun Lu.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by the NNSF 11271044 of China.

A Appendix: Comparing Hypothesis \({\mathfrak {F}}_{2,N,1,n}\) with controllable growth conditions

A Appendix: Comparing Hypothesis \({\mathfrak {F}}_{2,N,1,n}\) with controllable growth conditions

It is easily checked that Hypothesis \({\mathfrak {F}}_{2,N,1,n}\) for \(n\ge 2\) may be equivalently formulated as Hypothesis \({\mathfrak {F}}_{2,N,1,n}\).   Let \(z=(z_1,\ldots ,z_N)\in {\mathbb {R}}^{N}\), \(p=\left( p^i_\alpha \right) \in {\mathbb {R}}^{N\times n}\), where \(1\le i\le N\) and \(\alpha \in {\mathbb {N}}_0^n\) with \(|\alpha |=1\). Let \({\overline{\Omega }}\times {\mathbb {R}}^N\times {\mathbb {R}}^{N\times n}\ni (x, z,p)\mapsto F(x, z,p)\in {\mathbb {R}}\) be twice continuously differentiable in (zp) for almost all x, measurable in x for all values of (zp), and \(F(\cdot ,z,p)\in L^1(\Omega )\) for \((z,p)=0\). Let \(\kappa _n=2n/(n-2)\) for \(n>2\), and \(\kappa _n\in (2,\infty )\) for \(n=2\). The derivatives of F fulfill the following properties:

(i) \(F_{z_i}(\cdot , 0)\in L^{\kappa _n/(\kappa _n-1)}\) and \(F_{p^i_\alpha }(\cdot , 0)\in L^{2}\) for \(i=1,\ldots ,N\) and \(|\alpha |=1\).

(ii) There exist positive constants \({\mathfrak {g}}_1\), \({\mathfrak {g}}_2\) and \(s\in (0, \frac{\kappa _n-2}{\kappa _n})\), \(r_\alpha \in (0,\frac{\kappa _n-2}{2\kappa _n})\) for each \(\alpha \in {\mathbb {N}}_0^n\) with \(|\alpha |=1\), such that for \(i,j=1,\ldots ,N\), \(|\alpha |=|\beta |=1\),

The controllable growth conditions (abbreviated to CGC below) [27, page 40] (that is, the so-called ‘common condition of Morrey’ or ‘the natural assumptions of Ladyzhenskaya and Ural’tseva’ [27, page 38,(I)]) may be, in our notation, expressed as:

CGC: \({\overline{\Omega }}\times {\mathbb {R}}^N\times {\mathbb {R}}^{N\times n}\ni (x, z,p)\mapsto F(x, z,p)\in {\mathbb {R}}\) is of class \(C^2\), and there exist positive constants \(\nu , \mu , \lambda , M_1, M_2\), such that with \(|z|^2:=\sum ^N_{l=1}|z_l|^2\) and \(|p|^2:=\sum _{|\alpha |=1}\sum ^N_{k=1}|p^k_\alpha |^2\),

Moreover, if \(F=F(x,p)\) does not depend explicitly on z, the first three lines are replaced by

$$\begin{aligned}&\nu \left( 1+|p|^2\right) -\lambda \le F(x,p) \le \mu \left( 1+|p|^2\right) \quad \hbox {and}\\&|F_{p^i_\alpha }(x,p)|,\quad |F_{p^i_\alpha x_l}(x,p)|\le \mu \left( 1+|p|^2\right) ^{1/2}. \end{aligned}$$

From these it is not hard to see

Proposition 4.22

CGC implies Hypothesis \({\mathfrak {F}}_{2,N,1,n}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, G. Morse theory methods for a class of quasi-linear elliptic systems of higher order. Calc. Var. 58, 134 (2019). https://doi.org/10.1007/s00526-019-1577-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1577-1

Mathematics Subject Classification

Navigation