Skip to main content
Log in

Milbemycin production byStreptomyces sp.: the effect of carbohydrates

  • Published:
Journal of Industrial Microbiology

Summary

Milbemycin production byStreptomyces hygroscopicus RB4569D was examined in media containing different carbohydrates. Total milbemycin titer could be increased by substitution of fructose for glucose and by selection of the appropriate starch type. Total titer could be further enhanced by increasing the concentration of fructose and/or starch in the medium. Rates of carbohydrate utilization were shown to be independent of their initial concentration and increased titers in high carbohydrate media were shown to be due to a prolonged production phase rather than an increased accretion rate. The pattern of individual milbemycin components was governed by the carbon:nitrogen ratio of the medium rather than carbohydrate concentration and there was a critical C:N ratio below which no milbemycin was produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burg, R.W., B.M. Miller, E.E. Baker, J. Birnbaum, S.A. Currie, R. Hartman, Y.-L. Kong, R.L. Monaghan, G. Olson, I. Putter, J.B. Tunac, H. Wallick, E.O. Stapley, R. Oiwa and S. Omura. 1979. Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob. Agents Chemother. 15: 361–367.

    PubMed  Google Scholar 

  2. Carter, G. T., J.A. Nietsche, M.R. Hertz, D.R. Williams, M.M. Siegel, G.O. Morton, J.C. James and D.B. Borders. 1988. LL-F28249 antibiotic complex: a new family of antiparasitic macrocyclic lactones. Isolation, characterisation and structures of LL-F28249 α, β, γ, λ. J. Antibiot. 41: 519–529.

    PubMed  Google Scholar 

  3. Demain, A.L., Y. Aharonowitz and J.F. Martin. 1983. Metabolic control of secondary biosynthetic pathways. In: Biochemistry and Genetic Regulation of Commercially Important Antibiotics (Vining, L.C., ed.), pp. 49–72, Addison-Wesley, Reading, MA.

    Google Scholar 

  4. Dewitt, J.P., J.V. Jackson and T.J. Paulus. 1989. Actinomycetes. In: Fermentation Process Development of Industrial Organisms (Neway, J.O., ed), pp. 1–71, Marcel Dekker, New York.

    Google Scholar 

  5. Fisher, M.H. and H. Mrozik. 1984. The avermectin family of macrolide-like antibiotics. In: Macrolide Antibiotics: Chemistry, Biology and Practice (Omura, S., ed.), pp. 553–606, Academic Press, London.

    Google Scholar 

  6. Hidaka, H. and T. Adachi. 1980. Studies on the α-amylase fromStreptomyces hygroscopicus SF-1084. In: Mechanisms of Saccharide Polymerisation/Depolymerisation (Marshall, J.J., ed.), pp. 101–118, Academic Press, London.

    Google Scholar 

  7. Hood, J.D., R.M. Banks, M.D. Brewer, J.P. Fish, B.R. Manger and M.E. Poulton. 1989. A novel series of milbemycin antibiotics fromStreptomyces strain E225. 1. Discovery, fermentation and anthelmintic activity. J. Antibiot. 42: 1593–1598.

    PubMed  Google Scholar 

  8. Ikeda, H., H. Kotaki, H. Tanaka and S. Omura. 1988. Involvement of glucose catabolism in avermectin production byStreptomyces avermitilis. Antimicrob. Agents Chemother. 32: 282–284.

    PubMed  Google Scholar 

  9. Martin, J.F. and A.L. Demain. 1980. Control of antibiotic biosynthesis. Microbiol. Rev. 44: 230–251.

    PubMed  Google Scholar 

  10. McCann-McCormick, P.A., R.L. Monaghan, E.E. Baker, R.T. Goegelman and E.O. Stapley. 1981. Studies on the avermectin fermentation. Advances in Biotechnology (Proc. Int. Ferment. Symp.) (Moo-Young, M., C.W. Robinsons and C. Vezina, eds), pp. 69–74, Pergamon, Toronto.

    Google Scholar 

  11. McCormick, P.A. and R.T. Goegelman. 1986. Anthelmintic macrocyclic lactones and their production by fermentation. European Patent 204 421.

    Google Scholar 

  12. Ono, M., H. Mishima, Y. Takiguchi and M. Terao. 1983. Milbemycins, a new family of macrolide antibiotics: fermentation, isolation, physico-chemical properties and bioconversion of milbemycins J and K. J. Antibiot. 36: 509–515.

    PubMed  Google Scholar 

  13. Poole, N.J., P. Hendley, M.W. Skidmore and R.S.I. Joseph. 1986. pesticidal and anthelmintic milbemycins. British Patent 2 170 499.

  14. Rudd, B.A.M., R.A. Fletton, J.B. Ward, D. Noble, N. Porter, G.C. Lawrence and H.M. Noble. 1987. Macrolide compounds. European Patent 242 052.

  15. Schulman, M.D. 1989. Biosynthesis of avermectins byStreptomyces avermitilis. Dev. Ind. Microbiol. 30: 151–159.

    Google Scholar 

  16. Takiguchi, Y., H. Mishima, M. Okuda, M. Terao, A. Aoki and R. Fukuda. 1980. Milbemycins, a new family of macrolide antibiotics: fermentation, isolation and physico-chemical properties. J. Antibiot. 33: 1120–1127.

    PubMed  Google Scholar 

  17. Takiguchi, Y., M. Ono, S. Muramatsu, J. Ide, H. Mishima and M. Terao. 1983. Mibemycins, a new family of macrolide antibiotics: fermentation, isolation and physico-chemical properties of milbemycins D, E, F, G and H. J. Antibiot. 36: 502–508.

    PubMed  Google Scholar 

  18. Ward, J.B., H.M. Noble, N. Porter, R.A. Fletton and D. Noble. 1986. Antibiotic components and their preparation. British Patent 2 166 436.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warr, S.R.C., Box, S.J., Burbidge, C. et al. Milbemycin production byStreptomyces sp.: the effect of carbohydrates. Journal of Industrial Microbiology 13, 43–48 (1994). https://doi.org/10.1007/BF01569661

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569661

Key words

Navigation