Skip to main content
Log in

The mathematical relations of the torsion pendulum in the study of surface films

  • Originalarbeiten
  • Kolloide und Natürliche Makromoleküle
  • Published:
Kolloid-Zeitschrift und Zeitschrift für Polymere Aims and scope Submit manuscript

Summary

The equations of motion of the surface torsion pendulum under an impulsive, constant, constant rate, and sinusoidal torque applied either to the top (Searle type instrument) of the bottom (Couette type instrument) are derived assuming the viscoelastic behaviour of the film to be representable by a simple Voigt element. The contribution of the clean interface and the determination of the instrument constants are surveyed. Finally more complex models and the application of the newer methods and concepts of linear viscoelastic theory to the study of surface films are discussed.

Zusammenfassung

Die Bewegungsgleichungen des Oberflächentorsionspendels werden abgeleitet für den Fall eines impulsiven, eines konstanten, eines gleichförmig beschleunigten und eines sinusoidalen Drehmomentes in einem Apparat entweder vom Typus Searle oder vom Typus Couette unter der Annahme, daß das viskoelastische Verhalten des Films durch ein einfaches Voigt-Modell dargestellt werden kann. Der Beitrag der reinen Grenzfläche und die Bestimmung der Apparaturkonstanten werden untersucht. Komplexere Modelle und die Anwendung der neueren Methoden und Konzepte der linearen viskoelastischen Theorie in Untersuchungen an Oberflächenfilmen werden gleichfalls besprochen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mouquin, H. and E. K. Rideal, Proc. Roy. Soc. (London) A 114, 690 (1927).

    Google Scholar 

  2. Cumper, C. W. N., and A. E. Alexander, Australian J. Scient. Research, series A 5, 189 (1952).

    Google Scholar 

  3. Joly, M. J., Phys. radium 9, 345 (1938).

    CAS  Google Scholar 

  4. Harkins, W. D. and J. G. Kirkwood, J. Chem. Phys. 6, 53 (1938).

    Article  CAS  Google Scholar 

  5. Ewers, W. E. and R. A. Sack, Australian J. Chem. 7, 40 (1953).

    Article  CAS  Google Scholar 

  6. Myers, R. J. and W. D. Harkins, J. Chem. Phys. 5, 601 (1937).

    Article  CAS  Google Scholar 

  7. Criddle, D. W. and A. C. Meader, J. Appl. Phys. 26, 838 (1955).

    Article  CAS  Google Scholar 

  8. Nielsen, L. E., R. Wall and G. Adams, J. Colloid Sci. 13, 441 (1958).

    Article  CAS  Google Scholar 

  9. Pouradier, J., J. chim. phys. 46, 627 (1949).

    CAS  Google Scholar 

  10. Langmuir, I. and V. J. Schaefer, J. Amer. Chem. Soc. 59, 2400 (1937).

    Article  CAS  Google Scholar 

  11. Kalousek, M., and V. Vyšin, Chem. Listy 48, 486 (1954).

    CAS  Google Scholar 

  12. Tschoegl, N. W., Kolloid-Z. 174, 113 (1961).

    Article  CAS  Google Scholar 

  13. Tschoegl, N. W., Australian J. Phys. 14, 307 (1961).

    Google Scholar 

  14. van Wazer, J. R., J. Colloid Sci. 2, 223 (1947).

    Article  Google Scholar 

  15. Jaeger, J. C., Introduction to the Laplace Transformation (London 1956).

  16. Trapeznikov, A. A., Acta Physicochimica USSR 9, 273 (1938).

    CAS  Google Scholar 

  17. Jaffe, J. and J. M. Loutz, J. Polymer Sci. 29, 381 (1958).

    Article  CAS  Google Scholar 

  18. Sasaki, F. and H. Kimizuka, Bull. Chem. Soc. Japan 25, 318 (1952).

    Article  CAS  Google Scholar 

  19. Chaminade, R., D. G. Dervichian and M. Joly, J. Chim. phys. 47, 883 (1950).

    CAS  Google Scholar 

  20. Ellis, S, Ellis, C., A. F. Lanham and K. G. A. Pankhurst, J. Sci. Instruments 32, 70 (1955).

    Article  CAS  Google Scholar 

  21. Fourt, L. and W. D. Harkins, J. Phys. Chem. 42, 897 (1938).

    CAS  Google Scholar 

  22. Brown, A. G., W. C. Thuman and J. W. McBain, J. Colloid Sci. 8, 491 (1953).

    Article  CAS  Google Scholar 

  23. Sanders, E., K. Durham and M. Camp, Research 8, S 18, (1955).

    Google Scholar 

  24. Reiner, M. and H. Rivlin, Kolloid-Z. 43, 1 (1927).

    Article  CAS  Google Scholar 

  25. Joly, M., J. chim. phys. 36, 285 (1939).

    CAS  Google Scholar 

  26. Tschoegl, N. W., J. Colloid Sci. 13, 500 (1958).

    Article  CAS  Google Scholar 

  27. Inokuchi, K., Bull. Chem. Soc. Japan 26, 500 (1953).

    Article  CAS  Google Scholar 

  28. Fourt, L., J. Phys. Chem. 43, 887 (1939).

    Article  CAS  Google Scholar 

  29. Cumper, C. W. N. and A. E. Alexander, Trans Faraday Soc. 46, 235 (1950).

    Article  CAS  Google Scholar 

  30. Tschoegl, N. W. and A. E. Alexander, J. Colloid Sci. 15, 168 (1960).

    Article  CAS  Google Scholar 

  31. Boyd, G. E. and F. Vaslov, J. Colloid Sci. 13, 275 (1958).

    Article  CAS  Google Scholar 

  32. —, J. Polymer Sci. 8, 257 (1952).

    Article  Google Scholar 

  33. Inokuchi, K., Bull Chem. Soc. Japan 28, 453 (1955).

    Article  CAS  Google Scholar 

  34. Tachibana, T. and K. Inokuchi, J. Colloid Sci. 8, 341 (1953).

    Article  CAS  Google Scholar 

  35. Nakagawa, T., Kagaku 21, 138 (1951).

    Google Scholar 

  36. Leaderman, H., in: Eirich, F. R., Rheology, Vol. 2, (New York 1958).

  37. Inokuchi, K., Bull. Chem. Soc. Japan 27, 203 (1954).

    Article  CAS  Google Scholar 

  38. Inokuchi, K., Bull. Chem. Soc. Japan 27, 432 (1954).

    Article  CAS  Google Scholar 

  39. Ferry, D. J., in: Eirich, F. R., Rheology, Vol. 2, (New York 1958).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tschoegl, N.W. The mathematical relations of the torsion pendulum in the study of surface films. Kolloid-Z.u.Z.Polymere 181, 19–29 (1962). https://doi.org/10.1007/BF01557887

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01557887

Keywords

Navigation