Skip to main content
Log in

Capillary hysteresis in a confined swirling two-fluid flow

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

This experimental study describes a hysteresis—a vivid manifestation of strongly nonlinear flow physics. A sealed vertical cylindrical container of radius 45 mm and height 90 mm is filled with water and sunflower oil. The rotating lid drives swirl and themeridional circulation of both fluids. As the rotation strength Re increases, the oil–water interface rises near the axis, touches the lid at Re = Re1, and moves toward the container sidewall. Then as Re decreases, the interface returns to the axis and separates fromthe lid at Re = Re2 < Re1. At each Re from the range, Re2 < Re < Re1, two different stable steady flow states are observed, which is typical of hysteresis. The hysteresis only occurs if a volume fraction of oil is small. The hysteresis disappears as the oil fraction exceeds a threshold, which is around 0.4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liow, K.Y.S., Thouas, G., Tan, B.T., Thompson, M.C., and Hourigan, K., Modeling the Transport of MomentumandOxygen in an Aerial-Disk Driven Bioreactor Used for Animal Tissue or CellCulture, IFMBE Proc., 2008, vol. 23, pp. 1672–1675.

    Article  Google Scholar 

  2. Liow, K.Y.S., Tan, B.T., Thouas, G., and Thompson, M.C., CFD Modeling of the Steady-State Momentum and Oxygen Transport in a Bioreactor That is Driven by AN Aerial Rotating Disk, Modern Phys. Lett. B, 2009, vol. 23, pp. 121–127.

    Article  ADS  MATH  Google Scholar 

  3. Lo Jacono, D., Nazarinia, M., and Brøns, M., Experimental Vortex Breakdown Topology in a Cylinder with a Free Surface, Phys. Fluids, 2009, vol. 21, p. 111704.

    Article  ADS  MATH  Google Scholar 

  4. Balci, A., Brøns, M., Herrada, M.A., and Shtern, V.N., Vortex Breakdown in a Truncated Conical Bioreactor, Fluid Dyn. Res., 2015, vol. 47, p. 065503.

    Article  ADS  MathSciNet  Google Scholar 

  5. Herrada, M.A. and Shtern, V.N., Patterns of a CreepingWater-Spout Flow, J. Fluid Mech., 2014, vol. 744, pp. 65–88.

    Article  ADS  Google Scholar 

  6. Herrada, M.A., Shtern, V.N., and Lopez-Herrera, J., Vortex Breakdown in a Water-Spout Flow, Phys. Fluids, 2013, vol. 25, p. 093604.

    Article  ADS  Google Scholar 

  7. Brady, P.T., Herrman, M., and Lopez, J.M., Two-Fluid Confined Flow in a Cylinder Driven by a Rotating End Wall, Phys. Rev. E, 2012, vol. 85, p. 016308.

    Article  ADS  Google Scholar 

  8. Brady, P.T., Herrman, M., and Lopez, J.M., Addendum to Two-Fluid Confined Flow in a Cylinder Driven by a Rotating Endwall, Phys. Rev. E, 2012, vol. 85, p. 067301.

    Article  ADS  Google Scholar 

  9. Fujimoto, S. and Takeda, Ya., Topology Changes of the Interface between Two Immiscible Liquid Layers by a Rotating Lid, Phys. Rev. E, 2009, vol. 80, p. 015304(R).

  10. Tsai, J.C., Tao, C.Y., Sun, Y.C., Lai, C.Y., Huang, K.H., Juan, W.T., and Huang, J.R., Vortex-Induced Morphology on a Two-Fluid Interface and the Transitions, Phys. Rev. E, 2015, vol. 92, p. 031002(R).

  11. Chen, T.C. and Joseph, D.D., Subcritical Bifurcation of Plane Poiseuille Flow, J. Fluid Mech., 1973, vol. 58, pp. 337–351.

    Article  ADS  MATH  Google Scholar 

  12. Shtern, V. and Hussain, F., Hysteresis in a Swirling Jet as a Model Tornado, Phys. Fluids A, 1993, vol. 5, pp. 2183–2195.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Shtern, V. and Hussain, F., Hysteresis in Swirling Jets, J. Fluid Mech., 1996, vol. 309, pp. 1–44.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Shtern, V., Counterflows: Paradoxical Fluid Mechanics Phenomena, New York: Cambridge Univ. Press, 2012.

    Book  MATH  Google Scholar 

  15. Burggraf, O.R. and Foster, M.R., Continuation or Breakdown in Tornado-Like Vortices, J. Fluid Mech., 1977, vol. 80, pp. 685–704.

    Article  ADS  MATH  Google Scholar 

  16. Sorensen, J.N., Naumov, I.V., and Mikkelsen, R., Experimental Investigation in Three-Dimensional Flow Instabilities in a Rotating Lid-Driven Cavity, Exp. Fluids, 2006, vol. 41, pp. 425–440.

    Article  Google Scholar 

  17. Vanierschot, M. and Van den Bulck, E., Hysteresis in Flow Patterns in Annular Swirling Jets, Exp. Therm. Fluid Sci., 2007, vol. 31, pp. 513–524.

    Article  MATH  Google Scholar 

  18. Vanierschot, M. and Van den Bulck, E., Numerical Study of Hysteresis in Annular Swirling Jets with a Stepped-Conical Nozzle, Int. J. Num. Meth. Fluids, 2007, vol. 54, pp. 313–324.

    Article  MATH  Google Scholar 

  19. Eral, H.B., Mannetje, D.J.C.M., and Oh, J.M., Contact Angle Hysteresis: A Review of Fundamentals and Applications, Coll. Pol. Sci., 2013, vol. 291, pp. 247–260.

    Article  Google Scholar 

  20. Carrión, L., Herrada, M.A., and Shtern, V.N., Topology and Stability of aWater-Soybean-Oil Swirling Flow, Phys. Rev. Fluids, 2017, vol. 2, p. 024702.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Naumov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumov, I.V., Sharifullin, B.R. & Shtern, V.N. Capillary hysteresis in a confined swirling two-fluid flow. J. Engin. Thermophys. 26, 391–398 (2017). https://doi.org/10.1134/S1810232817030092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232817030092

Navigation