Skip to main content
Log in

Analysis of HGPRT CRM+ human lymphoblast mutants

  • Published:
Somatic Cell Genetics

Abstract

Three 6-thioguanine-resistant mutants of the human diploid lymphoblast line MGL-8 were studied. The inactivation by heat of both HGPRT activity and antigenicity of the HGPRT immunologically cross-reacting material of the A30 mutant cells were not protected by PRPP, indicating that the HGPRT in A30 cells has an altered PRPP binding site, leading to lack of stabilization and rapid degradation of the enzyme. Two dimensional separations of the immunoprecipitates from extracts of the parental and mutant cell lines showed that the A35 mutant CRM has a more acidic isoelectric pH, while the A30 CRM has a more basic isoelectric pH and that the A30 protein has a faster rate of degradation than the wild-type HGPRT. The A30 CRM also has a smaller molecular size than the wild-type enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Epstein, J., Leyva, A., Kelly, W. M., and Littlefield, J. W. (1977).Somat. Cell Genet. 3:135–148.

    Google Scholar 

  2. Arnold, W. J., Mead, J. C., and Kelly, W. N. (1972).J. Clin. Invest. 51:1805–1812.

    Google Scholar 

  3. Ghangas, G. S., and Millman, G. (1975).Proc. Natl. Acad. Sci. U.S.A. 72:4147–4150.

    Google Scholar 

  4. Szybalski, W., Szybalska, E. H., and Ragni, G. (1962).Natl. Cancer Inst. Monogr. 7:75–89.

    Google Scholar 

  5. Littlefield, J. W. (1966).Exp. Cell Res. 41:190–196.

    Google Scholar 

  6. Fox, I. H., and Kelly, W. N. (1971).J. Biol. Chem. 246:5739–5748.

    Google Scholar 

  7. Kizaki, H., and Sakurada, T. (1977).J. Lab. Clin. Med. 89:1135–1144.

    Google Scholar 

  8. Millman, G., Lee, E., Ghangas, G. S., McLaughlin, J., and George, M., Jr. (1976).Proc. Natl. Acad. Sci. U.S.A. 73:4589–4593.

    Google Scholar 

  9. Ghangas, G. A., and Millman, G. (1977).Science 196:1119–1120.

    Google Scholar 

  10. Goldberg, A. L. (1972).Proc. Natl. Acad. Sci. U.S.A. 69:422–426.

    Google Scholar 

  11. Lin, S., and Zabin, J. (1973).J. Biol. Chem. 247:2205–2211.

    Google Scholar 

  12. Capecchi, M. R., Capecchi, N. E., Hughes, S. H., and Wahl, G. H. (1974).Proc. Natl. Acad. Sci. U.S.A. 71:4732–4736.

    Google Scholar 

  13. Arnold, W. J., and Kelly, W. N. (1971).J. Biol. Chem. 246:7398–7404.

    Google Scholar 

  14. Olsen, A. S., and Millman, G. (1974).J. Biol. Chem. 249:4030–4037.

    Google Scholar 

  15. Greene, M. L., Boyle, J. A., and Seegmiller, J. E. (1970).Science 167:887–889.

    Google Scholar 

  16. Millman, G., Krauss, S. W., and Olsen, A. S. (1977).Proc. Natl. Acad. Sci. U.S.A. 74:926–930.

    Google Scholar 

  17. Pine, M. J. (1972).Annu. Rev. Microbiol. 26:103–126.

    Google Scholar 

  18. Goldbert, A. L., Howell, E. M., Li, E. B., Martel, S. B., and Proutz, W. F. (1974).Fed. Proc. 33:1112–1120.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epstein, J., Ghangas, G.S., Leyva, A. et al. Analysis of HGPRT CRM+ human lymphoblast mutants. Somat Cell Mol Genet 5, 809–820 (1979). https://doi.org/10.1007/BF01542643

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01542643

Keywords

Navigation