Skip to main content
Log in

Chinese hamster ovary mutant UV-1 is hypomutable and defective in a postreplication recovery process

  • Published:
Somatic Cell Genetics

Abstract

CHO-UV-1 is a mutant of the Chinese hamster cell CHO-K1 hypersensitive to killing by ultraviolet light but with normal resistance to X-ray. It is also hypersensitive to killing by ethyl methane sulfonate. Hybrid clones formed by fusing UV-1 and Chinese hamster lung cells display the normal ultraviolet resistance of the latter. The sensitive phenotype behaves, therefore, in a genetically recessive manner. Ultraviolet sensitivity of UV-1 is not associated with a deficiency in excision repair. Alkaline sucrose gradient sedimentation analysis of nascent DNA from ultraviolet-irradiated cells reveals that UV-1 is, however, markedly deficient in postreplication recovery. Further, UV-1 has a lower rate of induced mutation to 6-thioguanine resistance than does the parental cell when treated with ultraviolet light or ethyl methane sulfonate. These results suggest that the phenotype of UV-1 is due to a mutation in a form of postreplication recovery which in normal cells is error prone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Witkin, E.M. (1976).Bacteriol. Rev. 40:869–907.

    Google Scholar 

  2. Setlow, R.B., and Carrier, W.L. (1964).Proc. Natl. Acad. Sci. U.S.A. 51:226–231.

    Google Scholar 

  3. Bridges, B.A., and Munson, R.J. (1966).Biochem. Biophys. Res. Commun. 22:268–273.

    Google Scholar 

  4. Paterson, M.C., Smith, B.P., Lohman, P.H.M., Anderson, A.K., and Fishman, L. (1976).Nature 260:444–447.

    Google Scholar 

  5. Paterson, M., Smith, B., Knight, P., and Anderson, A. (1977). InResearch in Photobiology, (ed.) Castellani, A. (Plenum Publishing, New York), pp. 207–218.

    Google Scholar 

  6. Sasaki, M.S. (1978). InDNA Repair Mechanisms, (eds.) Hanawalt, P.C., Friedberg, E.C., and Fox, C.F. (Academic Press, New York), pp. 675–684.

    Google Scholar 

  7. Fujiwara, Y., Tatsumi, M., and Sasaki, M.S. (1977).J. Mol. Biol. 113:635–649.

    Google Scholar 

  8. Cleaver, J.E. (1968).Nature 218:652–656.

    Google Scholar 

  9. Cleaver, J.E. (1978). InMetabolic Basis of Inherited Disease, 4th ed., (eds.) Stanbury, J.B., Wyngaarden, J.B., and Frederickson, D.S. (McGraw-Hill, New York), pp. 1072–1095.

    Google Scholar 

  10. Lehman, A.R., Kirk-Bell, S., Arlett, C.F., Paterson, M.C., Lohman, P.H.M., de WeerdKastelein, E.A., and Bootsma, D. (1975).Proc. Natl. Acad. Sci. U.S.A. 72:219–223.

    Google Scholar 

  11. German, J. (1972).Progr. Med. Genet. 8:61–101.

    Google Scholar 

  12. Maher, V.M., and McCormick, J.J. (1976). InBiology of Radiation Carcinogenesis, (eds.) Yuhas, J.M., Tennant, R.W., and Regan, J.D. (Raven Press, New York), pp. 129–145.

    Google Scholar 

  13. Maher, V.M., Ouellette, L.M., Curren, R.D., and McCormick, J.J. (1976).Nature 261:593–595.

    Google Scholar 

  14. Rosenstein, B., and Ohlsson-Wilhelm, B.M. (1979).Somat. Cell Genet. 5:117–128.

    Google Scholar 

  15. Kuroki, T., and Miyashita, S.Y. (1977).J. Cell. Physiol. 90:79–90.

    Google Scholar 

  16. Sato, K., and Hieda, N. (1979).Int. J. Radiat. Biol. 35:83–87.

    Google Scholar 

  17. Schultz, R., Chang, C.C., and Trosko, J. (1978).Proc. Am. Assoc. Cancer Res. Am. Soc. Clin. Oncol. 19:83–87.

    Google Scholar 

  18. Todd, P.W., and Hellewell, A.B. (1969).Mutat. Res. 7:129–132.

    Google Scholar 

  19. Sinclair, W.K. (1964).Radiat. Res. 21:584–611.

    Google Scholar 

  20. Stamato, T.D., and Waldren, C.A. (1977).Somat. Cell Genet. 3:431–440.

    Google Scholar 

  21. Busch, D.B., Cleaver, J.E., and Glaser, D.A. (1980).Somat. Cell Genet. 6:407–418.

    Google Scholar 

  22. Thompson, L.H., Rubin, J.S., Cleaver, J.E., Whitmore, G.F., and Brookman, K. (1980).Somat. Cell Genet. 6:391–405.

    Google Scholar 

  23. Shiomi, T., and Sato, K. (1979).Somat. Cell Genet. 5:193–201.

    Google Scholar 

  24. Isomura, K., Nikaido, O., Horikawa, M., and Sugahara, T. (1973).Radiat. Res. 53:143–152.

    Google Scholar 

  25. Baker, R.M., Van Voorhis, W.C., and Spencer, L.A. (1976).Proc. Natl. Acad. Sci. U.S.A. 64:5249–5253.

    Google Scholar 

  26. Kao, F.T., Johnson, R.T., and Puck, T.T. (1969).Science 164:312–314.

    Google Scholar 

  27. Kao, F.T., Chasin, L., and Puck, T.T. (1969).Proc. Natl. Acad. Sci. U.S.A. 64:1284–1291.

    Google Scholar 

  28. Kao, F.T., and Puck, T.T. (1972).J. Cell. Physiol. 80:41–50.

    Google Scholar 

  29. Kao, F.T., and Puck, T.T. (1969).Proc. Natl. Acad. Sci. U.S.A. 60:1275–1281.

    Google Scholar 

  30. Ham, R.G. (1965).Proc. Natl. Acad. Sci. U.S.A. 53:288–293.

    Google Scholar 

  31. Kao, F.T., and Puck, T.T. (1967).Genetics 55:513–524.

    Google Scholar 

  32. Lee, H.H., and Puck, T.T. (1960).Radiat. Res. 12:340–348.

    Google Scholar 

  33. Kao, F.T., and Puck, T.T. (1969).J. Cell. Physiol. 74:245–258.

    Google Scholar 

  34. O'Neill, P., Couch, D.B., Machanoff, R., San Sebastian, J.R., Brimer, P.A., and Hsie, A.W. (1977).Mutat. Res. 45:103–109.

    Google Scholar 

  35. Collins, A.R.S. (1977).Biochim. Biophys. Acta 478:461–473.

    Google Scholar 

  36. Ahnstrom, G., and Edvardsson, K.A. (1974).Int. J. Radiat. Biol. 26:493–497.

    Google Scholar 

  37. Collins, A.R.S., and Johnson, R.T. (1979).J. Cell. Physiol. 99:125–138.

    Google Scholar 

  38. Tobey, R.A., Anderson, E.C., and Pedersen, D.F. (1967).J. Cell. Physiol. 70:63–68.

    Google Scholar 

  39. Carrier, W.L., and Setlow, R.B. (1971).Ann. Biochem. 43:427–432.

    Google Scholar 

  40. Kraemer, K. (1977). InDNA Repair Processes, (eds.) Nichols, W.W., and Murphy, D.G., (Symposia Specialists, Miami), pp. 37–71.

  41. Regan, J.D., and Setlow, R.B. (1976). InBiology of Radiation Carcinogenesis, (eds.) Yuhas, J.M., Tennant, R.W., and Regan, J.D. (Raven Press, New York), pp. 103–113.

    Google Scholar 

  42. Collins, A.R.S., Downes, C.S., and Johnson, R.T. (1980).J. Cell Physiol. 103:179–191.

    Google Scholar 

  43. Collins, A.R.S., and Johnson, R.T. (1981). InDNA Repair: A Laboratory Manual of Research Procedures. (eds.) Friedberg, E.C., and Hanawalt, P.C. (Marcel Dekker, New York), pp. 341–360.

    Google Scholar 

  44. Walters, R.A., Tobey, R.A., and Ratliff, R.L. (1973).Biochim. Biophys. Acta 319:336–347.

    Google Scholar 

  45. Lohman, P.H.M., Paterson, M.C., Zelle, B., and Reynolds, R.J. (1977).Mutat. Res. 46:138–139.

    Google Scholar 

  46. Lehman, A.R., and Kirk-Bell, S. (1972).Eur. J. Biochem. 31:438–445.

    Google Scholar 

  47. Park, S.D., and Cleaver, J.E. (1979).Proc. Natl. Acad. Sci. U.S.A. 76:3927–3931.

    Google Scholar 

  48. Hanawalt, P.C., Cooper, P.K., Ganesan, A.K., and Smith, C.A. (1979).Annu. Rev. Biochem. 48:783–836.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stamato, T.D., Hinkle, L., Collins, A.R.S. et al. Chinese hamster ovary mutant UV-1 is hypomutable and defective in a postreplication recovery process. Somat Cell Mol Genet 7, 307–320 (1981). https://doi.org/10.1007/BF01538856

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01538856

Keywords

Navigation