Skip to main content
Log in

Transient thermal gratings at surfaces for thermal characterization of bulk materials and thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Transient Thermal Gratings (TTGs) at surfaces of absorbing materials have been utilized for investigating heat diffusion in bulk materials and thin films. In this report, we describe the theoretical background of the technique and present experimental data. TTGs were excited in the surface plane by interference of two pulsed laser beams and monitored by a cw probe beam, either via temperature dependence of the reflectivity or by deflection from the displacement pattern. A theoretical model describing the thermal and thermoelastic surface response was developed, both for a homogeneous material and a multilayer structure. The potential of the technique will be demonstrated by experimental results on (i) thermal diffusivities of bulk materials, (ii) anisotropic lateral heat transport, and (iii) thermal diffusivities of metal and diamond films. Furthermore, we will show that TTGs allow thermal depth profiling of inhomogeneous materials whenever there is a vertical gradient in thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.E. Goodson, M.I. Flik: Appl. Mech. Rev.47, 101 (1994)

    Google Scholar 

  2. J.E. Graebner: Diamond Films Technol.3, 77 (1993)

    Google Scholar 

  3. P. Hess (ed.):Photoacoustic, Photothermal and Photochemical Processes at Surfaces and in Thin Films, Topics Curr. Phys., Vol. 47 (Springer, Berlin, Heidelberg 1989)

    Google Scholar 

  4. A. Mandelis (ed.):Principles and Perspectives of Photothermal and Photoacoustic Phenomena (Elsevier, New York 1992)

    Google Scholar 

  5. D. Bičanič (ed.):Photoacoustic and Photothermal Phenomena III, Springer Ser. Opt. Sci., Vol. 69 (Springer, Berlin, Heidelberg 1992)

    Google Scholar 

  6. D. Fournier, J.P. Roger (eds.): 8th Int'l Topical Meeting on Photoacoustic and Photothermal Phenomena. J. Phys. IV (Paris)4, Coll. C7 (1994)

  7. H.J. Eichler, P. Guenter, D.W. Pohl:Laser-Induced Dynamic Gratings, Springer Ser. Opt. Sci., Vol. 50 (Springer, Berlin, Heidelberg (1986)

    Google Scholar 

  8. A. Harata, H. Nishimura, T. Sawada: Appl. Phys. Lett.57, 132 (1990)

    Google Scholar 

  9. J. Jàuregui, E. Matthias. Appl. Phys. A54, 35 (1991)

    Google Scholar 

  10. C.D. Marshall, I.M. Fishmann, M.D. Fayer: Phys. Rev. B43, 2696 (1991)

    Google Scholar 

  11. O.W. Käding, E. Matthias, R. Zachai, H.-J. Füßer, P. Münzinger: Diamond Related Mater.2, 1185 (1993)

    Google Scholar 

  12. M. Alam, R.E. Imhof, B Zharg: [6]D. Fournier, J.P. Roger (eds.): p. C7–299

    Google Scholar 

  13. H. Eichler, G. Salje, H. Stahl: J. Appl. Phys.44, 5383 (1973)

    Google Scholar 

  14. C.D. Marshall, I.M. Fishmann, R.C. Dorfman, C.B. Eom, M.D. Fayer: Phys. Rev. B45, 10009 (1992)

    Google Scholar 

  15. O.W. Käding, M. Rösler, R. Zachai, H.-J. Füßer, E. Matthias: Diamond Related Mater.3, 1178 (1994)

    Google Scholar 

  16. O.W. Käding, H. Skurk, E. Matthias: [6]D. Fournier, J.P. Roger (eds.): p. C7–619

    Google Scholar 

  17. A. Harata, T. Sawada: Jpn. J. Appl. Phys.32, 2188 (1993)

    Google Scholar 

  18. A.R. Duggal, J.A. Rogers, K.A. Nelson: J. Appl. Phys.72, 2623 (1992)

    Google Scholar 

  19. X.D. Zhu, Th. Rasing, Y.R. Shen: Phys. Rev. Lett.61, 2883 (1988)

    Google Scholar 

  20. S.V. Govorkov, T. Schröder, I.L. Schumay, P. Heist: Phys. Rev. B46, 6864 (1992)

    Google Scholar 

  21. J.J. Kasinski, L.A. Gomez-Jahn, K.J. Faran, S.M. Gracewski, R.J.D. Miller: J. Chem. Phys.90, 1253 (1989)

    Google Scholar 

  22. A. Tokmakoff, W.F. Banholzer: M.D. Fayer: Appl. Phys. A56, 87 (1993)

    Google Scholar 

  23. J.A. Jáuregui, E. Welsch: J. Mod. Opt.40, 2173 (1993)

    Google Scholar 

  24. M.A. Olmstead, N.M. Amer, S. Kohn, D. Fournier, A.C. Boccara: Appl. Phys. A32, 141 (1983)

    Google Scholar 

  25. K. Ujihara: J. Appl. Phys.43, 2376 (1972)

    Google Scholar 

  26. A. Rosencwaig, J. Opsal, W.L. Smith, D.L. Willenborg: Appl. Phys. Lett.46, 1013 (1985)

    Google Scholar 

  27. H.S. Carslaw, J.C. Jaeger:Conduction of Heat in Solids (Oxford Univ. Press, New York 1959)

    Google Scholar 

  28. W. Nowacki:Thermoelasticity (Pergamon, New York 1986)

    Google Scholar 

  29. E.T. Swartz, R.O. Pohl: Rev. Mod. Phys.61, 605 (1989)

    Google Scholar 

  30. O.W. Käding, H. Skurk, K.E. Goodson: Appl. Phys. Lett.65, 1629 (1994)

    Google Scholar 

  31. For vanishing interface thermal resistance, (17) is consistent with (4b) in J. Opsal, A. Rosencwaig, D.L. Willenborg: Appl. Opt.22, 3169 (1983)

    Google Scholar 

  32. D.W. Pohl, S.E. Schwarz, V. Irninger: Phys. Rev. Lett.31, 32 (1973)

    Google Scholar 

  33. W. Chan, P.S. Pershan: Phys. Rev. Lett.39, 1368 (1977)

    Google Scholar 

  34. Y.S. Touloukian, R.W. Powell, C.Y. Ho, P.G. Klemens:Thermophysical Properties of Matter, Vols. 1, 2 (IFI/Plenum, New York 1970)

    Google Scholar 

  35. T.R. Anthony, J.L. Fleischer, I.R. Olson, D.G. Cahill: Phys. Rev. B42, 1104 (1990)

    Google Scholar 

  36. H. Skurk, O.W. Käding, E. Matthias: unpublished

  37. J. Jauregui, Z.L. Wu, D. Schäfer, E. Matthias: — 1992) p. 682

    Google Scholar 

  38. K. Plamann, D. Fournier, E. Anger, A. Gicquel. Diamond Related Mater.3, 752 (1994)

    Google Scholar 

  39. J.E. Graebner, S., Jin, G.W. Kammlot, J.A. Herb, C.F. Gardinier: Appl. Phys. Lett.60, 1576 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Käding, O.W., Skurk, H., Maznev, A.A. et al. Transient thermal gratings at surfaces for thermal characterization of bulk materials and thin films. Appl. Phys. A 61, 253–261 (1995). https://doi.org/10.1007/BF01538190

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01538190

PACS

Navigation