Skip to main content
Log in

Modulation of a neuronal calmodulin mRNA species in the rat brain stem by reserpine

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Reserpine evokes transsynaptic impulse activity by depleting catecholaminergic neurotransmitters in the rat brain. Previous studies suggest a relationship between catecholaminergic activity and calmodulin concentration. In this report we employ Northern blot analysis to examine the effect of a single subcutaneous injection of reserpine on levels of calmodulin mRNA species which are preferentially expressed in neurons of the rat brain. Regional differences in mRNA levels were also investigated byin situ hybridization and drug-induced changes were noted particularly in specific regions of the rat brain stem. The riboprobe used in thein situ hybridization study recognized a 4.0 kilobase neuronal calmodulin mRNA species (NGB1), which was derived from the rat CaM1 gene. A calmodulin radio-immunoassay was utilized to demonstrate a drug-induced increased in calmodulin protein levels in a region which included the brain stem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bianchi, B. R., and Takimoto, G. S. 1984. Lability in storage of3H-dopamine and3H-norepinephrine in crude synaptosome (P2) and vesicle-associated fractions of rat brain. Life Sciences, 34:607–615.

    Google Scholar 

  2. Greene, L. A., and Rein, G. 1977. Release storage and uptake of catecholamines by a clonal cell line of nerve growth factor (NGF) responsive pheochromocytoma cells. Brain Res., 129:247–263.

    Google Scholar 

  3. Lafi, M. A. K. and Leake, L. D. 1988. Actions of dopamine and related amines on reserpinised and chronically denervated vasa differentia of the rat. Comp. Biochem. Physiol., 89c:141–146.

    Google Scholar 

  4. Pichler, L. and Pifl, C. 1989. Locomoter behaviour of selective dopamine agonists in mice: Is endogenous dopamine the only catecholamine involved? J. Pharm. Pharmacol., 41:690–693.

    Google Scholar 

  5. Bean, A. J., Adrian, T. E. and Modlin, I. M. 1989. Dopamine and neurotensin storage in colocalized neuronal populations. J. Pharmacol. Exp. Ther., 249:681–687.

    Google Scholar 

  6. Hu, B., Steriade, M, and Deschenes, M. 1989. The effects of brain stem peribracial stimulation on neurons of the lateral geniculate nucleus. Neuroscience, 31:13–24.

    Google Scholar 

  7. Takimoto, G. S., Stittsworth, Jr., J. D., and Stephens, J. K. 1983 [3H]Dopamine depletion from osmotically defined storage sites: Effects of reserpine, 53 mM KCl, and d-amphetamine. J. Neurochem., 41:119–129.

    Google Scholar 

  8. Gnegy, M. E., and Costa, E. 1980. Catecholamine receptor supersensitivity and subsensitivity in the central nervous system. Youdim, M. B. H. ed. Essays in neurochemistry and neuropharmacology, vol. 4, New York: Wiley & Sons; pp249–282.

    Google Scholar 

  9. Gnegy, M. 1982. Relationship of calmodulin and dopaminergic activity in the striatum. Fed. Proc. Am. Soc. Exp. Biol., 41:2273–2277.

    Google Scholar 

  10. Wu, K., and Black, I. B. 1988. Transsynaptic impulse activity regulates postsynaptic density molecules in developing and adult rat superior cervical ganglion. Proc. Natl. Acad. Sci., USA, 85:6087–6210.

    Google Scholar 

  11. Biguet, N. F., Buda, M., Lamouroux, A., Samolyk, D., and Mallet, J. 1980. Time course of the changes of TH mRNA in rat brain and adrenal medulla after a single injection of reserpine. EMBO, 5:287–291.

    Google Scholar 

  12. Black, I. B., Chikaraishi, D. M. and Lewis, E. J. 1985. Transsynaptic increase in RNA coding for tyrosine hydroxylase in a rat sympathetic ganglion. Brain Res., 339:151–153.

    Google Scholar 

  13. Schalling, M., Dagerlind, A., Brene, S., Hallman, H., Djurfeldt, M., Persson, H., Terenius, L., Goldstein, M., Schlesinger, D., and Hokfelt, T. 1988. Coexistence and gene expression of phenylethanolamine N-methyltransferase, tyrosine hydroxylase, and neuropeptide tyrosine in the rat and bovine adrenal gland: effects of reserpine. Proc. Natl. Acad. Sci. USA, 85:8306–8310.

    Google Scholar 

  14. Cheung, W. Y. 1980. Calcium and Cell Function, Vol. 1, Calmodulin (New York: Academic Press).

    Google Scholar 

  15. Caceres, A., Bender, P., Snavely, L., Rebhun, L. I., and Steward, O. 1983. Distribution and subcellular localization of calmodulin in adult and developing brain tissue. Neuroscience, 10:449–461.

    Google Scholar 

  16. Grab, D. J., Carlin, R. K., and Siekevitz, P. 1980. The presence of calmodulin in postsynaptic densities. Ann N.Y. Acad. Sci., 356:55–72.

    Google Scholar 

  17. Lin, C. T., Dedman, J. R., Brinkley, B. R., and Marcus, A. R. 1980. Localization of calmodulin in rat cerebellum by immunoelectron microscopy. J. Cell Biol., 85:473–480.

    Google Scholar 

  18. Sobue, K., Morimoto, K., Kanda, K., and Kakiuchi, S. 1982. Ca++-dependent binding of3H-calmodulin to the microsomal fraction of brain. J. Biochem., 91:1313–1320.

    Google Scholar 

  19. Wood, J. G., Wallace, R. W., Whitaker, J. N., and Cheung, W. Y. 1980. Immunocytochemical localization of calmodulin and a heat-labile calmodulin-binding protein (CaM-BP80) in basal ganglia of mouse brain. J. Cell Biol., 84:66–76.

    Google Scholar 

  20. DeLorenzo, R. J., Freedman, S. D., Yohe, W. B., and Maurer, S. C. 1980. Stimulation of Ca++-dependent neurotransmitter release and presynaptic nerve terminal protein phosphorylation by calmodulin and a calmodulin-like protein isolated from synaptic vesicles. Proc. Natl. Acad. Sci. USA, 76:1838–1842.

    Google Scholar 

  21. DeLorenzo, R. J. 1982. Calmodulin in neurotransmitter release and synaptic function. Fed. Proc., 41:2265–2272.

    Google Scholar 

  22. Rasanussen, H., and Goodman, D. B. P. 1977. Relationships between calcium and cyclic nucleotides in cell activation. Physiol. Rev., 57:421–509.

    Google Scholar 

  23. Rubin, R. P. 1972. The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol. Rev., 22:389–428.

    Google Scholar 

  24. Malenka, R. C., Kauer, J. A., Perkel, D. J., Mauk, M. D., Kelly, P. T., Nicoll, R. A., and Waxham, M. N. 1989. An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature, 340:554–557.

    Google Scholar 

  25. Polak, K. A., Edelman, A. M., Wasley, J. W. F., and Cohan, C. S. 1991. A novel calmodulin antagonists, CGS 9343B, modulates calcium-dependent changes in neurite outgrowth and growth cone movements. J. Neurosci., 11:534–542.

    Google Scholar 

  26. Fischer, R., Koller, M., Flura, M., Mathews, S., Strehler-Page, M-A., Krebs, J., Penniston, J. T., Carafoli, E., and Strehler, E. E. 1988. Multiple divergent mRNAs code for a single human calmodulin. J. Biol. Chem. 263:17055–17062.

    Google Scholar 

  27. Nojima, H. 1989. Structural organization of multiple rat calmodulin genes. J. Mol. Biol., 208:269–282.

    Google Scholar 

  28. SenGupta, B., Friedberg, F., and Betera-Wadleigh, S. D. 1987. Molecular analysis of human and rat calmodulin complementary DNA clones. J. Biol. Chem., 262:16663–16670.

    Google Scholar 

  29. Ni, B., Rush, S., Gurd, J. W., Brown, I. R. 1992. Molecular cloning of calmodulin mRNA species which are preferentially expressed in neurons of the rat brain. Mol. Brain Res., 13:7–17.

    Google Scholar 

  30. Shaw, G., and Kamen, R. 1986. A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degration. Cell, 46:659–667.

    Google Scholar 

  31. Morgan, J. I., and Curran, T. 1987. Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. TINS, 12:459–462.

    Google Scholar 

  32. Stein, R., Mori, N., Matthews, K., Lo, L. and Anderson, D. 1988. The NGF-inducible SCG10 mRNA encodes a novel membrane-bound protein present in growth cones and abundant in developing neurons. Neuron, 1:463–476.

    Google Scholar 

  33. Caput, D., Beutler, B., Hartog, K., Thayer, R., Brown-Shimer, S., and Cerami, A. 1986. Identification of a common nucleotide sequence in the 3′ untranslated region of mRNA molecules specifying inflammatory mediators. Proc. Natl. Acad. Sci. USA, 83:1670–1674.

    Google Scholar 

  34. Meijlink, F., Curran, T., Miller, A. D., and Verma, I. M. 1985. Removal of a 67 basepair sequence in the noncoding region of proto-oncogene c-fos converts it to a transforming gene. Proc. Natl. Acad. Sci. USA, 82:4987–4991.

    Google Scholar 

  35. van Straaten, F., Muller, R., Curran, T., Van Beveren, C., and Verma, I. 1983. Complete nucleotide sequence of a human concogene deduced amino acid sequence of the human c-fos protein. Proc. Natl. Acad. Sci. USA, 80:3183–3187.

    Google Scholar 

  36. Noma, Y., Sideras, P., Naito, T., Bergstedt-Lindquist, S., Azuma, C., Severinson, E., Tanabe, T., Kinashi, T., Matsudam, F., Yaoita, Y., and Honjo, T. J. 1986. Cloning of cDNA encoding the murine IgGl induction factor by a novel strategy using SP6 promoter. Nature 319:640–646.

    Google Scholar 

  37. Siekevitz, P. 1985. The postsynaptic density: A possible role in long lasting effects in the central nervous system. Proc. Natl. Acad. Sci. USA, 82:3494–3498.

    Google Scholar 

  38. Davis, L. G., Dibner, M. D., and Battey, J. F. 1986. Basic Methods in Molecular Biology. Elsevier Science Publishing Co. Inc. New York.

    Google Scholar 

  39. Landry, C. F., Ivy, G. O., Dunn, R. J., Marks, A., and Brown, I. R. 1989. Expression of the gene encoding the B-subunit of S100 protein in the developing rat brain analyzed by in situ hybridization. Mol. Brain Res., 6:251–262.

    Google Scholar 

  40. Sprang, G. K., and Brown, I. R. 1987. Selective induction of a heat shock gene in fibre tracts and cerebellar neurons of the rabbit brain detected by in situ hybridization. Mol. Brain Res., 3:89–93.

    Google Scholar 

  41. Bailey, N. T. 1988. Statistical methods in biology. Edward Arnold. London.

    Google Scholar 

  42. Luthin, G. R., and Tabakoff, B. 1981. Calmodulin content in mouse striatum after morphine administration. Trans. Am. Soc. Neurochem., 12:148.

    Google Scholar 

  43. Luccheli, A., Guidotti, A., and Costa, E. 1978. Striatal content of a Ca++-dependent regulator protein and dopaminergic receptor function. Brain Res., 155:130–135.

    Google Scholar 

  44. Roberts-Lewis, J. M., Welsh, M. J., and Gnegy, M. 1986. Chronic amphetamine treatment increases striatal calmodulin in rats. Brain Res., 384:383–386.

    Google Scholar 

  45. Bagchi, S. P. 1990. Antidopaminegic action of verapamil and several other drugs: Inactivation of vesicular dopamine. Life Sci., 46:847–863.

    Google Scholar 

  46. Carlsson, A., Rosengren, E., Bertler, A., and Nilsson, J. 1957. Reserpine. In Psychotropic Drugs (Garattini, S., and Ghetti, V., Eds.) pp363–372. Elsevier, New York, N. Y.

    Google Scholar 

  47. Paton, D. M. 1976. in The mechanisms of neuronal and extraneuronal transport of catecholamines (Paton, D. M., Ed.) pp49–66. Raven Press, New York, N. Y.

    Google Scholar 

  48. Seidler, F. J., Kirdsey, D. F., Lau, C., Whitmore, W. L., and Slotkin, T. A. 1977. Uptake of3H-Norepinephrine by storage vesicles prepared from whole rat brain: properties of the uptake system and its inhibition by drugs. Life Sci., 21:1075–1086.

    Google Scholar 

  49. Toll, L., and Howard, B. D. 1978. Role of Mg++-ATPase and a pH gradient in the storage of catecholamines in synaptic vesicles. Biochem., 17:2517–2523.

    Google Scholar 

  50. Ceccatelli, S., Cortes, R., and Hokfelt, T. 1991. Effect of reserpine and colchicine on neuropeptide mRNA levels in the rat hypothalamic paraventricular nucleus. Mol. Brain Res., 9:57–69.

    Google Scholar 

  51. Chafouleas, J. G., Pardue, R. L., Brinkley, B. R., Dedman, J. R., and Means, A. R. 1984. Changes in calmodulin and its mRNA accompany reentry of quiescent (GO) cells into the cell cycle. Cell, 36:73–81.

    Google Scholar 

  52. Chien, Y.-H., and David, I. B. 1984. Isolation and characterization of calmodulin genes from Xenopus laevis. Mol. and Cell. Biol., 4:507–513.

    Google Scholar 

  53. Cimino, M., Chen, J. F., and Weiss, B. 1990. Ontogenetic development of calmodulin mRNA in rat brain using in situ hybridization histochemistry. Develop. Brain Res. 54:43–49.

    Google Scholar 

  54. Hardin, S. H., Carpenter, C. D., Hardin, P. E., Bruskin, A. M., and Klein, W. H. 1985. Structure of the Spec 1 gene encoding a major calcium-binding protein in the embryonic ectoderm of the sea urchin, Stronglyocentrotus prupuratus. J. Mol. Biol., 186:243–255.

    Google Scholar 

  55. Rasmussen, C. D. and Means, A. R. 1989. Calmodulin, cell growth and gene expression. TINS, 12:433–438.

    Google Scholar 

  56. Yamanaka, M. K., Saugstad, J. A., Hanson-Painton, O., McCarthy, B. J., and Tobin, S. L. 1987. Structure and expression of the Drosophilia calmodulin gene. Nucleic Acids Res., 15:3335–3348.

    Google Scholar 

  57. Zimmer, W. E., Schloss, J. A., Silflow, C. D., Youngblom, J., and Watterson, D. M. 1988. Structural organization, DNA sequence, and expression of the calmodulin gene. J. Biol. Chem., 263:19370–19383.

    Google Scholar 

  58. Braam, J. and Davis, R. W. 1990. Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell, 60:357–364.

    Google Scholar 

  59. Brostrom, C. O., Huang, Y.-C., Breckenridge, B. M., and Wolff, D. J. 1975. Identification of a calcium-binding protein as a calcium-dependent regulator of brain adenylate cyclase. Proc. Natl. Acad. Sci. USA, 72:64–68.

    Google Scholar 

  60. Means, A. R. 1981. Calmodulin: properties, intracellular localization, and multiple roles in cell regulation. Rec. Progr. Horm. Res., 37:333–367.

    Google Scholar 

  61. Blaustein, M. P. 1988. Calcium transport and buffering in neurons. Trends Neurosci., 3:438–443.

    Google Scholar 

  62. Carafoli, E. 1987. Intracellular calcium homeostasis. Annu. Rev. Biochem., 56:395–433.

    Google Scholar 

  63. Christakos, S., Gabrielides, C., and Rhoten, W. B. 1989. Vitamin D-dependent calcium binding proteins: chemistry, distribution, functional considerations and molecular biology. Endocrin. Rev., 10:3–26.

    Google Scholar 

  64. Van Eldik, L. Y., Zendegui, J. G., Marshak, D. R., and Watterson, D. M. 1982. Calcium binding protein and the molecular basis of calcium action. Int. Rev. Cytol., 77:1–61.

    Google Scholar 

  65. Mattson, M. P., Rychlik, B., Chu, C., and Christakos, S. 1991. Evidence for calcium-reducing and excito-protective roles for the calcium-binding protein calbindin-D28k in culture hippocampal neurons. Neuron, 6:41–51.

    Google Scholar 

  66. Lowenstein, D. H., Miles, M. F., Hatam, F., and McCabe, T. 1991. Up regulation of calbindin-D28k mRNA in the rat hippocampus following focal stimulation of the perforant path. Neuron, 6:627–633.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, B., Brown, I.R. Modulation of a neuronal calmodulin mRNA species in the rat brain stem by reserpine. Neurochem Res 18, 185–192 (1993). https://doi.org/10.1007/BF01474683

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01474683

Key Words

Navigation