Skip to main content
Log in

Ambipolar diffusion in two-temperature multicomponent plasmas

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A recent formulation of multicomponent diffusion in multitemperature gas mixtures [J. D. Ramshaw, J. Non-equilib. Thermodyn. 18. 121 (1993)] is applied to ambipolar diffusion in two-temperature multicomponent plasmas in zero magnetic field. Simplifications chic to the small electron muss are systematically exploited. A general expression is derived for the ambipolar electric field E. In the special case where the electron and heavy-particle temperatures are equal, this expression reduces to a result previously obtained using a self-consistent effective binary diffusion (SCEBD) approximation [J. D. Ramshaw and C. H. Chang,Plasma Chem. Plasma Process.11. 395 (1991)]. When thermal diffusion due to electrons is neglected, the heavy particles are shown to diffuse precisely as they would in the same E field if the electrons were entirely removed from the system. Finally, the SCEBD approximation for ambipolar diffusion in multicomponent plasmas is generalized to the case, of unequal electron and heavy-particle temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Krall and A. W. Trivelpiece,Principle of Plasma Physics, McGraw-Hill, New York (1973).

    Google Scholar 

  2. M. Mitchner and C. H. Kruger, Jr.,Partially Ionized Gases, Wiley-Interscience, New York (1973).

    Google Scholar 

  3. J. L. Delcroix,Introduction to the Theory of Ionized Gases, Interscience, New York (1960).

    Google Scholar 

  4. V. E. Golant, A. P. Zhilinsky, and I. E. Sakharov,Fundamentals of Plasma Physics, Wiley, New York (1980).

    Google Scholar 

  5. J. D. Ramshaw and C. H. Chang,Plasma Chem. Plasma Process.12. 299 (1992).

    Google Scholar 

  6. C. H. Chang and J. D. Ramshaw,Plasma Chem. Plasma Process.13, 189 (1993).

    Google Scholar 

  7. J. D. Ramshaw and C. H. Chang,Plasma Chem. Plasma Process.11, 395 (1991).

    Google Scholar 

  8. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids, Wiley, New York (1964).

    Google Scholar 

  9. S. Chapman and T. G. Cowling,The Mathematical Theory of Non-uniform Gases, 3rd edn., Cambridge University Press, Cambridge (1970).

    Google Scholar 

  10. J. H. Ferziger and H. G. Kaper,Mathematical Theory of Transport Processes in Gases, North-Holland, Amsterdam (1972).

    Google Scholar 

  11. R. M. Chmieleski and J. H. Ferziger,Phys, Fluids 10, 364 (1967).

    Google Scholar 

  12. U. Daybelge,J. Appl. Phys. 41, 2130 (1970).

    Google Scholar 

  13. J. D. Ramshaw,J. Non-equilib. Thermodyn. 18, 121 (1993).

    Google Scholar 

  14. R. S. Devoto,Phys. Fluids 9, 12311 (1966).

    Google Scholar 

  15. J. D. Ramshaw,J. Non-equilib. Thermodyn. 15, 295 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramshaw, J.D., Chang, C.H. Ambipolar diffusion in two-temperature multicomponent plasmas. Plasma Chem Plasma Process 13, 489–498 (1993). https://doi.org/10.1007/BF01465878

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01465878

Key words

Navigation