Skip to main content
Log in

Vitamin D sites and mechanisms of action: A histochemical perspective. Reflections on the utility of autoradiography and cytopharmacology for drug targeting

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Knowledge about sites and mechanisms of action of vitamin D and its analogs has been greatly advanced by histochemical approaches. High resolution and high sensitivity, combined with the integrative potential of relatively intact histochemical tissue preparations, contributed information that is difficult or impossible to obtain otherwise. In in vivo distribution studies with conventional biochemical assays, target cell populations associated with non-target tissues frequently remain unrecognized without the resolution achieved by cellular autoradiography. Autoradiography, alone or combined with immunohistochemistry when applied to in vivo drug targeting and target characterization, has provided information on cellular-subcellular receptor distribution in over 50 tissues. These discoveries, importantly, contribute to a new understanding of the biological role of vitamin D and challenge the concept of “the calcium homeostatic steroid hormone” as being too narrow. While some of the outstanding effects of vitamin D deficiency and toxicity relate to calcium homeostasis, the vast majority of the target tissues appear not to be primarily related to calcium metabolism, but rather to the activation and regulation of exo- and endocrine secretory and somatotrophic processes such as cell differentiation and proliferation. Also, several highly calcium-dependent tissues such as striated and smooth muscles are not genomic targets for vitamin D. The reviewed data on the diverse and extensive presence of target tissues forecast a high therapeutic potential for vitamin D and especially its low-calcemic analogs, far beyond that which is presently utilized. The evidence provided for vitamin D also testifies to the utility and need to include in vivo cytopharmacology in any target evaluation of bioactive compounds to further the understanding of their mechanisms of action, and to identify preferential targets and their differential therapeutic and toxic potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balmain N, Hauchecorne M, Pike JW, Cuisinier-Gleizes P, Mathieu H (1993) Distribution and subcellular immunolocalization of 1,25-dihydroxyvitamin D3 receptors in rat epiphyseal cartilage. Cell Mol Biol (Noisy-le-Grand) 39:339–350

    Google Scholar 

  • Bidmon H-J, Stumpf WE (1991) Phylogeny of receptors for 1,25-dihydroxyvitamin D3 (1,25D3, soltriol) in vertebrates and invertebrates. In: Norman AW, Bouillon R, Thomasset M (eds) Vitamin D, Gene regulation, structure-function analysis and clinical application, de Gruyter, Berlin, pp 673–674

    Google Scholar 

  • Bidmon H-J, Gutkowska J, Murakami R, Stumpf WE (1991) Vitamin D receptors in heart: effects on atrial natriuretic factor. Experientia 47:958–962

    PubMed  Google Scholar 

  • Birge SJ, Alpers DH (1973) Stimulation of intestinal mucosal proliferation by vitamin D. Gastroenterology 64:977–982

    PubMed  Google Scholar 

  • Boland R (1986) Role of vitamin D in skeletal muscle function. Endocr Rev 7:434–448

    PubMed  Google Scholar 

  • Braidman IP, Anderson DC (1985) Extra-endocrine functions of vitamin D. Clin Endocrinol (Oxf) 23:445–460

    Google Scholar 

  • Ciocca DR, Vargas Roig LM (1995) Estrogen receptors in human nontarget tissues: biological and clinical implications. Endocr Rev 16:35–62

    Article  PubMed  Google Scholar 

  • Clark SA, Stumpf WE, Sar M, DeLuca HF, Tanaka Y (1980) Target-cells for 1,25 dihydroxyvitamin D3 in the pancreas. Cell Tissue Res 209:515–520

    Article  PubMed  Google Scholar 

  • Clark SA, Stumpf WE, Sar M (1981) Effect of 1,25 dihydroxyvitamin D3 on insulin secretion. Diabetes 30:382–386

    PubMed  Google Scholar 

  • Clark SA, Dame MC, Kim YS, Stumpf WE, DeLuca HF (1985) 1.25-Dihydroxyvitamin D3 in teeth of rats and humans: receptors and nuclear localization. Anat Rec 212:250–254

    Article  PubMed  Google Scholar 

  • Clark SA, Stumpf WE, Bishop CW, DeLuca HF, Park DH, Joh DH (1986) The adrenal: a new target organ of the calciotropic hormone 1,25 dihydroxyvitamin D3. Cell Tissues Res 234:299–302

    Google Scholar 

  • Clark SA, Stumpf WE, Sar M, DeLuca HF (1987) 1,25-Dihydroxyvitamin D3 target cells in immature pancreatic islets. Am J Physiol 253:E99-E105

    PubMed  Google Scholar 

  • Clemens TL, Garrett KP, Zhou X-Y, Pike JW, Haussler MR, Dempster DW (1988) Immunohistochemical localization of the 1,25-dihydroxyvitamin D3 receptor in target cells. Endocrinology 122:1224–1230

    PubMed  Google Scholar 

  • Colston K, Hirst M, Feldman D (1980) Organ distribution of the cytoplasmic 1,25-dihydroxycholecalciferol receptor in various mouse tissues. Endocrinology 107:1916–1922

    PubMed  Google Scholar 

  • Costa EM, Blau HM, Feldman D (1986) 1,25-Dihydroxyvitamin D3 receptors and hormonal responses in cloned human skeletal muscle cells. Endocrinology 119:2214–2220

    PubMed  Google Scholar 

  • Fraser DR (1988) Calcium-regulating hormones: vitamin D. In: Nordin BEC (ed) Calcium in human biology. Springer Verlag, Berlin, pp 27–41

    Google Scholar 

  • Gelbard HA, Stern PH, U'Prichard DC (1980) 1,25-Dihydroxyvitamin D3 nuclear receptors in pituitary. Science 209:1247–1249

    PubMed  Google Scholar 

  • Herting DC, Steenbock H (1955) Vitamin D and gastric secretion. J Nutr 57:469–482

    PubMed  Google Scholar 

  • Hosomi J, Hosoi J, Abe E, Suda T, Kuroki T (1983) Regulation of terminal differentiation of cultured mouse epidermal cells by 1a,25-dihydroxyvitamin D3. Endocrinology 113:1950–1957

    PubMed  Google Scholar 

  • Ikekawa N, Ishizuka S (1992) Molecular structure and biological activity of vitamin D metabolites and their analogs. In: Bohl M, Duax WL (eds) Molecular structure and biological activity of steroids. CRC Press. Boca Raton, pp 293–316

    Google Scholar 

  • Jande SS, Maler L, Lawson DEM (1981) Immunohistochemical mapping of vitamin D-dependent calcium-binding protein. Nature 294:765–767

    Article  PubMed  Google Scholar 

  • Kim YS, Stumpf WE, Clark SA, DeLuca HF (1985) Nuclear uptake of 1,25-dihydroxyvitamin D3 in developing rodent teeth: an autoradiographic study. Anat Rec 212:301–306

    Article  PubMed  Google Scholar 

  • Kodicek E (1974) The story of vitamin D from vitamin to hormone. Lancet 2:325–329

    Article  PubMed  Google Scholar 

  • Kuhn TS (1962) The structure of scientific revolution. University of Chicago Press, Chicago

    Google Scholar 

  • Kurose T, Seino Y, Ishida H, Tsuji K, Fukumoto H, Koh G, Takeda J, Kitano N, Inagaki N, Tsuda T, Taminato T, Imura H (1988) Effect of vitamin D on gastrin somatostatin secretion from the isolated perfused rat stomach. Life Sci 42:1995–2001

    Article  PubMed  Google Scholar 

  • Majumdar SS, Bartke A, Stumpf WE (1994) Vitamin D modulates the effects of follicle-stimulating hormone on Sertoli cell function and testicular growth in Siberian hamsters. Life Sci 55: 1479–1486

    Article  PubMed  Google Scholar 

  • Marche P, Cassier P, Mathieu H (1980) Intestinal calcium-binding protein. Cell Tissue Res 212:63–72

    Article  PubMed  Google Scholar 

  • Merke J, Kreusser W, Bier B, Ritz E (1983) Demonstration and characterization of testicular receptor for 1,25-dihydroxycholecalciferol in the rat. J Biochem 130:303–308

    Google Scholar 

  • Merke J, Ritz E, Schettler G (1986) Neuere Gesichtspunkte zur Rolle von Vitamin D. Dtsch Med Wochenschr 111:345–349

    PubMed  Google Scholar 

  • Milde P, Merke J, Ritz E, Haussler MR, Rauterberg EW (1989) Immunohistochemical detection of 1,25-dihydroxyvitamin D3 receptors and estrogen receptors by monoclonal antibodies: comparison of four immunoperoxidase methods. J Histochem Cytochem 37:1609–1617

    PubMed  Google Scholar 

  • Narbaitz R, Stumpf WE, Sar M (1981) The role of autoradiographic and immunohistochemical techniques in the clarification of sites of metabolism and action of vitamin D. J Histochem Cytochem 29:91–100

    PubMed  Google Scholar 

  • Nishii Y, Abe J, Mori T, Brown AJ, Dusso AS, Finch J, Lopez-Hilker S, Morrissey J, Slatopolsky E (1991) The noncalcemic analogue of vitamin D, 22-oxacalcitriol, suppresses parathyroid hormone synthsis and secretion. In: Morii H (ed) Calciumregulating hormones, II. Calcium transport, bone metabolism and new drugs, Karger, Basel, pp 123–128

    Google Scholar 

  • Norman AW (1979) Vitamin D. The calcium homeostatic steroid hormone. Academic Press, New York

    Google Scholar 

  • Norman AW (1994) Editorial. The vitamin D endocrine system: identification of another piece of the puzzle. Endocrinology 134:1601A-1601C

    PubMed  Google Scholar 

  • Norman AW, Roth J, Orci L (1982) The vitamin D endocrine system: steroid metabolism, hormone receptors, and biological responses (calcium binding proteins). Endocr Rev 3:331–366

    PubMed  Google Scholar 

  • Proveddini DM, Tsoukas CD, Deftos LJ, Manolagas SC (1983) 1,25-Dihydroxyvitamin D3 receptors in human leukocytes. Science 221:1181–1183

    PubMed  Google Scholar 

  • Puchacz E, Stumpf WE, Stachowiak EK, Stachowiak MK (1995) 1,25(OH)2 Vitamin D3 increases expression of the tyrosine hydroxylase gene in adrenal medullary cells. Brain Res (submitted)

  • Reichel H, Koeffler HP, Norman AW (1989) The role of the vitamin D endocrine system in health and disease. N Engl J Med 320:980–991

    PubMed  Google Scholar 

  • Roth LJ, Stumpf WE (eds) (1969) Autoradiography of diffusible substances. Academic Press. New York

    Google Scholar 

  • Roth J, Bonner-Weir S, Norman AW, Orci L (1982) Immunocytochemistry of vitamin D-dependent calcium binding protein in chick-pancreas: exclusive localization in B-cells. Endocrinology 111:2216–2218

    Google Scholar 

  • Sar M, Stumpf WE, DeLuca HF (1980) Thyrotropes in the pituitary are target cells for 1,25 dihydroxy vitamin D3. Cell Tissue Res 209:161–166

    Article  PubMed  Google Scholar 

  • Sar M, Miller WL, Stumpf WE (1981) Effects of 1,25(OH)2 vitamin D3 on thyrotropin secretion in vitamin D deficient male rats. Physiologist 24:70

    Google Scholar 

  • Schleicher G, Privette TH, Stumpf WE (1989) Distribution of soltriol [1,25(OH)2-vitamin D3] binding sites in male sex organs of the mouse: an autoradiographic study. J Histochem Cytochem 37:1083–1086

    PubMed  Google Scholar 

  • Steenbock H, Herting DC (1955) Vitamin D and growth. J Nutr 57:449–468

    PubMed  Google Scholar 

  • Stumpf WE (1988a) Vitamin D—soltriol. The heliogenic steroid hormone: somatotrophic activator and regulator. Discoveries from histochemical studies lead to new concepts. Histochemistry 89:209–219

    Article  PubMed  Google Scholar 

  • Stumpf WE (1988b) The endocrinology of sunlight and darkness. Complementary roles of vitamin D and pineal hormones. Naturwissenschaften 75:247–251

    Article  PubMed  Google Scholar 

  • Stumpf WE, Denny E (1989) Vitamin D (soltriol), light, and reproduction. Am J Obstet Gynecol 161:1375–1384

    PubMed  Google Scholar 

  • Stumpf WE, Grant LD (eds) (1975) Anatomical neuroendocrinology. Karger, Basel

    Google Scholar 

  • Stumpf WE, O'Brien LP (1987) 1,25(OH)2 Vitamin D3 sites of action in the brain: an autoradiographic study. Histochemistry 87:393–406

    Article  PubMed  Google Scholar 

  • Stumpf WE, Privette TH (1991) The steroid hormone of sunlight soltriol (vitamin D) as a seasonal regulator of biological activities and photoperiodic rhythms. J Steroid Biochem Mol Biol 39:283–289

    Article  PubMed  Google Scholar 

  • Stumpf WE, Sar M (1976) Autoradiographic localization of estrogen, androgen, progestin and glucocorticosteroid in “target tissucs” and “non-terget tissues”. In: Pasqualini J (ed) Receptors and mechanism of action of steroid hormones. Dekker, New York, pp 41–84

    Google Scholar 

  • Stumpf WE, Solomon HD (eds) (1995) Autoradiography and corelative imaging. Academic Press, San Diego

    Google Scholar 

  • Stumpf WE, Sar M, Reid FA, Tanaka Y, DeLuca HF (1979) Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary, and parathyroid. Science 206:1188–1190

    PubMed  Google Scholar 

  • Stumpf WE, Sar M, DeLuca HF (1981a) Sites of action of 1,25(OH)2 vitamin D3 identified by thaw-mount autoradiography. In: Cohn DV, Talmage RV, Les Matthews J (eds) Hormonal control of calcium metabolism. ISBN Excerpta Medica, Elsevier, Amsterdam, pp 222–229

    Google Scholar 

  • Stumpf WE, Sar M, Zuber TJ, Soini E, Tuohimaa P (1981b) Quantitative assessment of steroid hormone binding sites by thaw-mount autoradiography. J Histochem Cytochem 29(1A): 201–206

    PubMed  Google Scholar 

  • stumpf WE, Sar M, O'Brien LP (1987) Vitamin D sites of action in the pituitary studied by combined autoradiography-immunohistochemistry. Histochemistry 88:11–16

    Article  PubMed  Google Scholar 

  • Stumpf WE, O'Brien LP, Clark SA, Reid RA (1988a) 1,25(OH)2 Vitamin D3 sites of action in spinal cord and sensory ganglion. Anat Embryol (Berl) 177:307–310

    Article  Google Scholar 

  • Stumpf WE, Sar M, O'Brien LP, Morin J (1988b) Pyloric gastrinproducing cells and pyloric sphincter muscle cells are nuclear targets for3H 1,25(OH)2 vitamin D3. Studied by autoradiography and immunohistochemistry. Histochemistry 89:447–450

    Article  PubMed  Google Scholar 

  • Stumpf WE, Perez-Delgado MdM, Li L, Bidmon H-J, Tuohimaa P (1993) Vitamin D (soltriol) nuclear receptors in abdominal scent gland and skin of Siberian hamster (Phodopus sungorus) localized by autoradiography and immunohistochemistry. Histochemistry 100:115–119

    Article  PubMed  Google Scholar 

  • Stumpf WE, Hayakawa N, Koike N, Hirate J (1995) Nuclear receptors for 1,25-dihydroxy-22-oxavitamin D3 (OCT) and 1,25-dihydroxyvitamin D3 in gastric gland neck mucous cells and gastrin enteroendocrine cells. Histochemistry 103:245–250

    PubMed  Google Scholar 

  • Taylor AN, Gleason WA Jr, Lankford GL (1984) Immunochemical localization of rat intestinal vitamin D-dependent calcium-binding protein. J Histochem Cytochem 32:153–158

    PubMed  Google Scholar 

  • Tsang RC, Cruz M, Specker B (1991) Vitamin D in infancy: 25-hydroxyvitamin D, an important bioactive principlein vivo in infancy? In: Norman AW, Bouillon R, Thomasset M (eds) Vitamin D gene regulation, structure-function analysis and clinical application. de Gruyter. Berlin, pp 739–744

    Google Scholar 

  • Tuohimaa P, Blauer M, Jaaskelainen T, Itkonen A, Lindfors M, Mahonen A, Palvimo J, Vilja P, Maenpaa PH (1992) Characterization of human 1,25-dihydroxyvitamin D3 receptor antipeptide antibodies. J Steroid Biochem Mol Biol 43:649–657

    Article  PubMed  Google Scholar 

  • Urban E, Schedl HP (1969) Mucosal growth effect of vitamin D on the duodenum. Experientia 25:1270–1271

    PubMed  Google Scholar 

  • Vanderbilt JN, Miesfeld R, Maler BA, Yamamoto KR (1987) Intracellular receptor concentration limits glucocorticoid-dependent enhancer activity. Mol Endocrinol 1:68–74

    PubMed  Google Scholar 

  • Walters MR (1981) An estrogen-stimulated 1,25-dihydroxyvitamin D3 receptor in rat uterus. Biochem Biophys Res Commun 103:721–726

    Article  PubMed  Google Scholar 

  • Walters MR (1992) Newly identified actions of the vitamin D endocrine system. Endocr Rev 13:719–764

    Article  PubMed  Google Scholar 

  • Windaus A, Schenck F, Werder F von (1936) Ueber das antirachitisch wirksame Bestrahlungsprodukt aus 7-Dehydrocholesterin. Z Physiol Chem 241:100–106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stumpf, W.E. Vitamin D sites and mechanisms of action: A histochemical perspective. Reflections on the utility of autoradiography and cytopharmacology for drug targeting. Histochem Cell Biol 104, 417–427 (1995). https://doi.org/10.1007/BF01464331

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01464331

Keywords

Navigation