Skip to main content
Log in

Compressibility of polycrystal and monocrystal copper: Acoustic-resonance spectroscopy

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Using a method used mainly by geophysicists for small specimens-acousticresonance spectroscopy (ARS)-we measured the elastic-stiffness constants of centimeter-size copper specimens with rectangular-parallelepiped shapes. The polycrystal consisted of heavily twinned 75-μm crystallites. From the specimens' macroscopic resonance-vibration frequencies (midkilohertz to low-megahertz), we calculated the least-squares elastic-stiffness coefficients, two and three for the two cases. Using the same specimens, we augmented the ARS measurements with conventional pulse-echo-method measurements. Using rod specimens, we measured the Young modulus E and torsional modulus G, and we calculated the bulk modulus B. The less direct and less familiar ARS method gives the same results as a usual pulse-echo method and a rod-resonance method. The small difference between polycrystal and monocrystal values may arise from mobile twin boundaries that contribute a small reversible plastic strain to the intrinsic elastic strain. We list 16 advantages of the ARS method to measure elastic constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Regnault,Annal. Chim. Phys. 4:64 (1842).

    Google Scholar 

  2. G. Wertheim,Annal. Chim. Phys. 23:52 (1848).

    Google Scholar 

  3. E. Amagat,C.R. Acad. Sci. Paris 99:130 (1884).

    Google Scholar 

  4. P. Bridgman,The Physics of High Pressure (Bell, London, 1952).

    Google Scholar 

  5. P. Bridgman,Am. Acad. Arts Sci. Proc. 58:165 (1923).

    Google Scholar 

  6. P. Bridgman,Am. Acad. Arts Sci. Proc. 77:187 (1949).

    Google Scholar 

  7. C. Swenson,Solid State Phys. 11:41 (1960).

    Google Scholar 

  8. E. Schreiber, O. Anderson, and N. Soga,Elastic Constants and Their Measurement (McGraw-Hill, New York, 1973).

    Google Scholar 

  9. D. Lazarus,Phys. Rev. 76:545 (1949).

    Google Scholar 

  10. E. Goens and J. Weerts,Phys. Z. 37:321 (1936).

    Google Scholar 

  11. H. Dernarest,J. Acoust. Soc. Am. 49:768 (1969)

    Google Scholar 

  12. H. Ledbetter, N. Frederick, and M. Austin,J. Appl. Phys. 51:305 (1980).

    Google Scholar 

  13. H. Ledbetter,Cryogenics 20:637 (1980)

    Google Scholar 

  14. P. Heyliger, A. Jilani, H. Ledbetter, R. Leisure, and C.-L. Wang.J. Acoust. Soc. Am. 94:1482 (1993)

    Google Scholar 

  15. H. Ledbetter and E. Naimon,J. Phys. Chem. Ref Data 3:897 (1974).

    Google Scholar 

  16. O. Anderson,J. Acoust. Soc. Am. 91:2245 (1992)

    Google Scholar 

  17. M. Lei, J. Sarrao, W. Visscher, T. Bell, J. Thompson, and A. Migliori,Phys. Rev. B 47:6154 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledbetter, H., Kim, S., Fortunko, C. et al. Compressibility of polycrystal and monocrystal copper: Acoustic-resonance spectroscopy. Int J Thermophys 17, 263–269 (1996). https://doi.org/10.1007/BF01448228

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01448228

Key words

Navigation