Skip to main content
Log in

Nonequilibrium modeling of low-pressure argon plasma jets; Part I: Laminar flow

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This paper presents a modeling attempt related to low-pressure plasma spraying processes which find increasing applications for materials processing. After a review of the various models for ionization and recombination processes, a two-temperature model for argon plasmas in chemical (ionization) nonequilibrium is established using finite rate chemistry. Results of sample calculations manifest departures from kinetic as well as chemical equilibrium, demonstrating that the conventional models based on the LTE (local thermodynamic equilibrium) assumption cannot provide proper prediction for low-pressure plasma jets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Mitchner and C. H. Kruger,Partially Ionized Gases, Wiley, New York (1973).

    Google Scholar 

  2. K. Dakeda, K. Hayashi, and T. Ohashi, “Fluid flow and temperature fields of plasma jet in low-pressure spray processes,” Proc. of ISPC-7, Vol. 3 (1985), p. 848.

  3. J. N. Le Toulouzan, G. Gouesbet, R. Darrigo, and A. Berlemont,AIAA J. 25, 30 (1987).

    Google Scholar 

  4. D. Wei, D. Apelian, and B. Farouk, “A critical analysis of proposed plasma jet models to predict temperature and velocity profiles,” MRS Spring Meeting, Paper K.1.6 (1987).

  5. D. Apelian, D. Wei, and M. Paliwal,Thin Solid Films 118, 395 (1984).

    Google Scholar 

  6. T. Honda and A. Kanzawa,AIAA J. 15, 1353 (1977).

    Google Scholar 

  7. G. A. Luk'yanov, V. V. Nazarov, and V. V. Sakhin,Sov. Phys.-Tech. Phys. 23, 744 (1978).

    Google Scholar 

  8. H.-D. Steffens and K.-H. Busse, “Measurements of particle and plasma velocity in a low-pressure plasma jet,” Proc. of ISPC-7, Vol. 2 (1985), p.710.

  9. G. Frind, C. P. Goody, and L. E. Prescott, “Measurement of particle velocity in two low-pressure plasma jets,” Proc. of ISPC-6, Vol. 1 (1983), p. 120.

  10. Y. Arata, A. Kobayashi, and Y. Habara,Jpn. J. Appl. Phys. Part 1, 1697 (1986).

    Google Scholar 

  11. R. Hidaka, T. Ooki, K. Takeda, K. Konda, H. Kanda, K. Chino, Y. Matsuda, K. Muraoka, and M. Akazaki,Jpn. J. Appl. Phys. 26, L1724 (1987).

    Google Scholar 

  12. J. W. Bond,Phys. Rev. 105, 1683 (1957).

    Google Scholar 

  13. H. Petschek and S. Byron,Ann. Phys. 1, 270 (1957).

    Google Scholar 

  14. K. N. C. Bray, “Electron-ion recombination in argon flowing through a supersonic nozzle,” inThe High-Temperature Aspects of Hypersonic Flow, W. C. Nelson, ed., Pergamon, New York (1962).

    Google Scholar 

  15. N. D'Angelo,Phys. Rev. 121, 505 (1961).

    Google Scholar 

  16. D. R. Bates and A. E. Kingston,Nature (London) 189, 652 (1961).

    Google Scholar 

  17. E. Hinnov and J. G. Hirschberg,Phys. Rev. 125, 795 (1962).

    Google Scholar 

  18. S. Byron, R. C. Stabler, and P. I. Bortz,Phys. Rev. Lett. 8, 376 (1962).

    Google Scholar 

  19. D. R. Bates, A. E. Kingston, and R. W. P. McWhirter, “Recombination between electrons and atomic ions. I. Optically thin plasmas,”Proc. R. Soc. London A267, 297 (1962).

    Google Scholar 

  20. D. R. Bates, A. E. Kingston, and R. W. P. McWhirter, “Recombination between electrons and atomic Ions. II. Optically thick plasmas,”Proc. R. Soc. London A270, 155 (1962).

    Google Scholar 

  21. M. Gryzinski,Phys. Rev. 115, 374 (1959).

    Google Scholar 

  22. K. E. Harwell and R. G. Jahn,Phys. Fluids 7, 214 (1964);7, 1554 (1964).

    Google Scholar 

  23. E. J. Morgan and R. D. Morrison,Phys. Fluids 8, 1608 (1965).

    Google Scholar 

  24. M. Hoffert and H. Lien,Phys. Fluids 10, 1769 (1967).

    Google Scholar 

  25. C. H. Kruger,Phys. Fluids 13, 1737 (1970).

    Google Scholar 

  26. G. J. Schultz and R. E. Fox,Phys. Rev. 106, 1179 (1957).

    Google Scholar 

  27. L. S. Frost and A. V. Phelps,Phys. Rev. A136, 1538 (1964).

    Google Scholar 

  28. J. F. Shaw, M. Mitchner, and C. H. Kruger,Phys. Fluids 13, 325 (1970).

    Google Scholar 

  29. J. F. Shaw, M. Mitchner, and C. H. Kruger,Phys. Fluids 13, 339 (1970).

    Google Scholar 

  30. C. G. Braun and J. A. Kunc,Phys. Fluids 30, 499 (1987).

    Google Scholar 

  31. T. Holstein,Phys. Rev. 72, 1212 (1947).

    Article  Google Scholar 

  32. T. Holstein,Phys. Rev. 83, 1159 (1951).

    Google Scholar 

  33. J. A. Kunc,Phys. Fluids 27, 2859 (1984).

    Google Scholar 

  34. D. A. Erwin and J. A. Kunc,Phys. Fluids 28, 3349 (1985).

    Google Scholar 

  35. C. J. Chen,Phys. Rev. 177, 245 (1969).

    Google Scholar 

  36. H. N. Olsen,Phys. Fluids 2, 614 (1959).

    Google Scholar 

  37. R. B. Bird, W. E. Stewart, and E. N. Lightfoot,Transport Phenomena, Wiley, New York (1960).

    Google Scholar 

  38. M. Y. Jafirin,Phys. Fluids 8, 606 (1965).

    Google Scholar 

  39. D. Kannapan and T. K. Bose,Phys. Fluids 20, 1668 (1977).

    Google Scholar 

  40. E. J. Miller and S. I. Sandler,Phys. Fluids 16, 491 (1973).

    Google Scholar 

  41. U. Daybelge, “Transport properties of two-temperature partially ionized plasmas,” Ph.D. Thesis, Stanford University (1968).

  42. R. S. Devoto,Phys. Fluids 16, 616 (1973).

    Google Scholar 

  43. U. Daybelge,J. Appl. Phys. 41, 2130 (1970).

    Google Scholar 

  44. R. S. Devoto,Phys. Fluids 10, 2105 (1967).

    Google Scholar 

  45. C. H. Kruger and M. Mitchner,Phys. Fluids 10, 1953 (1967).

    Google Scholar 

  46. R. M. Chmieleski and J. H. Ferziger,Phys. Fluids 10, 364 (1967).

    Google Scholar 

  47. Kun-Chen Hsu, “A self-consistent model for the high-intensity free-burning argon arc,” Ph.D. Thesis, University of Minnesota (1982).

  48. D. B. Spalding,genmix hA General Computer Program for Two-Dimensional Parabolic Phenomena, Pergamon, Oxford (1977).

    Google Scholar 

  49. Y. C. Lee, “Modeling work in thermal plasma processing,” Ph.D. Thesis, University of Minnesota (1984).

  50. I. K. Jennions, A. S. C. Ma, and D. B. Spalding, “A prediction for 2-dimensional, steady, supersonic flows (thegenmix h computer program),” Imperial College Technical Report HTS/77/24 (1977).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, C.H., Pfender, E. Nonequilibrium modeling of low-pressure argon plasma jets; Part I: Laminar flow. Plasma Chem Plasma Process 10, 473–491 (1990). https://doi.org/10.1007/BF01447204

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01447204

Key words

Navigation